The Design of Stable Fuzzy Controller for Chaotic Nonlinear Systems

Jong Tae Choi* Jin Bae Park** Yoon Ho Choi*

* Department of Electronic Engineering, Kyonggi University
** Department of Electrical Engineering, Yonsei University

E-mail : jtchoi@kuic.kyonggi.ac.kr

Abstract: This paper is to design stable fuzzy controller so as to control chaotic nonlinear systems effectively via fuzzy control system and Parallel Distributed Compensation (PDC) design. To design fuzzy control system, nonlinear systems are represented by Takagi-Sugeno(TS) fuzzy models. The PDC is employed to design fuzzy controllers from the TS fuzzy models. The stability analysis and control design problems is to find a common Lyapunov function for a set of linear matrix inequalities(LMIs). The designed fuzzy controller is applied to Rössler system. The simulation results show the effectiveness of our controller.

1. 서론

1970년대에 비선형 결정론적(deterministic) 법칙에 의한 결과로서 혼돈(chaos) 현상이 처음으로 인식되기 시작하면서 혼돈 현상의 해석에 관한 연구가 수행되어 왔고[1], 1990년대 초에 이르러 혼돈 계이어에 관한 연구 결과들이 발표되면서부터 혼돈 현상의 해석이 가능함이 밝혀졌다.

비선형 결정론적 규칙에 지배되는 혼돈 현상은 특히 초기치에 매우 민감한 성질을 가지고 외부적으로 예측 불가능하고 불규칙한 동태를 보인다. 특히 지금까지 산업계에서 예측 불가능하여 외란이나 잡음으로 간주 되던 신호들이 혼돈 특성을 갖는 신호로 발현되었으며[2], 안정한 시스템 동작을 위해 혼돈 현상의 제거 및 역제를 위한 혼돈 제어 방법에 관한 연구들이 현재 활발히 진행되고 있다[3]. 특히 혼돈 비선형 시스템의 지능 제어 전략에서 신경 속도방정이나 피자 이론을 통한 제어기 설계 방법에 관한 연구가 수행되고 있으며, 이에 대한 성공적인 적용 사례도 다수가 있다[4][5]. 한편, 안정도 해석과 계통적인 설계는 확실히 피자 제어 시스템을 위한 중요함 문제들 중에 하나이며, 최근에 이들 문제들에 관한 많은 연구들이 진행되고 있다[6][7].

따라서 본 논문은 혼돈 비선형 시스템의 흡수적인 제어를 위한 비선형 피자 제어 시스템과 안정한 제어기 를 설계하고자 한다. 또한 설계된 피자 제어기를 대표적인 혼돈 비선형 시스템인 Rössler 시스템에 적용하여 얻어진 결과를 통해 설계된 제어기의 성능을 검증하고자 한다.

2. 혼돈 비선형 시스템과 피자 추론 시스템

2.1 혼돈 비선형 시스템

지금까지 알려진 대표적인 혼돈 비선형 시스템 모델들은 연속 시간 시스템과 이산 시간 시스템으로 나눌 수 있으며, 연속 시간 혼돈 시스템에는 Duffing 방정식, Lorenz 방정식, Bonhoeffer-van der Pol 방정식,
\[\dot{x}(t) = \sum_{j=1}^{m} w_j(t) \left[A_j \cdot x(t) + B_j \cdot u(t) \right] \sum_{j=1}^{m} w_j(t) \] \tag{3} \\

\text{이러한 하중 함수(weight function) } w_j(t) = \prod_{i=1}^{N} M_i(x_i(t)) \\
\text{이고, } M_j(x_j(t)) \text{는 피저 집합 } M_j \text{에서 } x_j(t) \text{의 소속}
\text{정도이다.}
\text{따라서 식 (3)의 개구체 시스템은 식 (4)의 형태를 갖는다.}
\[\dot{x}(t) = \frac{\sum_{j=1}^{m} w_j(t) A_j \cdot x(t)}{\sum_{j=1}^{m} w_j(t)} \] \tag{4} \\

2.3 선택 형별 부등식(LMI)을 사용한 안정도 해석
\text{개구체 시스템 (4)의 안정도를 위한 흐름 조건은 다음과 같이 주어진다.}
\text{정리 1 : 식 (5)을 만족하는 양정형 행렬 } P \text{가 존재하면 피저 시스템 (4)는 }
\\text{정점 안정하다.}
\text{\(A_j^T P + P A_j < 0, \quad i=1,2,\ldots, r \) }
\text{정리 1은 선택 형별 부등식(LMI) 문제로 표현될 수 있으며[9], 안정도를 판별하기 위해 LMI를 }
\text{만족하는 } P \text{를 구하는 것이 필요하다. 이것은 다음과 같은 convex}
\text{-folder 문제로 쉽게 풀일 수 있다.}
\text{\(P > 0, \quad A_j^T P + P A_j < 0, \quad i=1,2,\ldots, r \) }

3. LMI를 사용한 피저 제어기 설계
\text{본 절에서는 TS 피저 모델로 표현된 혼돈 비선형 시스템에 대한 피저 제어기 설계 문제를 선택 형별 부등식(LMI)을 }
\text{이용하여 풀고자 한다.}
\text{본 논문에서는 모델 기반 피저 제어기 설계를 위해 병렬 분산 보상(Parallel Distributed Compensation: PDC)을 }
\text{이용하여[10], 제어기 설계 과정은 피저 시스템 모델의 부등식을 보상하기 위한 각각의 제어 규칙을 유도하는 것이다. 결과적으로 전체 피저 제어기는 각 선택}
\text{제어기의 피저 길이이다.}
\text{피저 제어기는 피저 시스템 식 (3)과 동일한 피저 집합으로 분할된다.}
\text{Rule i : IF } x_1(t) \text{ is } M_1 \text{ ... and } x_n(t) \text{ is } M_m \\
\text{THEN } \dot{u}(t) = -F_i \cdot x(t) \text{ (6) }
\text{여기서 } i=1,2,\ldots, r \text{ 이고, 피저 주문에 의한 피저 제어기는 식 (6)의 형태를 갖는다.}
\[u(t) = -\sum_{i=1}^{n} w_i(t) F_i x(t) \]

식 (6)을 식 (3)에 대입하면 식 (7)을 얻는다.

\[\dot{x}(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i(t) w_j(t) \left[A_{i,j} - B_i F_i \right] x(t) \]

식 (7)를 다시 정리하면 식 (8)과 같이 된다.

\[\dot{x}(t) = \frac{1}{K} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} w_i(t) w_j(t) \left[A_{i,j} - B_i F_i \right] x(t) \right] \]

\[+ \sum_{i=1}^{n} w_i(t) w_i(t) \left[\sum_{j=1}^{n} A_{i,j} - B_i F_i \right] x(t) \]

여기서 \(K = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i(t) w_j(t) \)이다.

식 (8)을 정리 1에 적용하면 안정도를 위한 충분 조건을 얻는다.

정리 2: 다음의 두 조건을 만족하는 일반적인 양항 정렬 \(P \)가 존재하면 폐기 체계 시스템 (7)은 정공 안정될 수 있다.

\[[A_{i,j} - B_i F_i] P + P [A_{i,j} - B_i F_i] < 0, \quad (9) \]

\[\sum_{i=1}^{m_i} [A_{i,j} - B_i F_i] P \] \(i \neq j \) (10)

식 (9)와 식 (10)을 다시 정리하면 식 (11)과 식 (12)와 같다.

\[A_i^T P - F_i^T B_i^T P + P A_i - B_i F_i P < 0, \quad (11) \]

\[A_i^T P - F_i^T B_i^T P + A_i^T P - F_i^T B_i^T P + P A_i - B_i F_i P < 0 \]

\[A_i^T P - F_i^T B_i^T P + F_i^T A_i^T P - F_i^T B_i^T P + A_i^T P - B_i F_i P < 0 \]

\[A_i^T P - F_i^T B_i^T P + F_i^T A_i^T P - F_i^T B_i^T P + A_i^T P - B_i F_i P < 0 \]

\[LMI에서 이들 조건들을 계산하기 위해 Q = P^{-1} \]

\[W_i = F_i P^{-1} P^{-1} \]을 정의하면 조건 (9)와 (10)으로부터 다음의 동등한 안정도 조건을 얻는다.

\[Q A_i^T + A_i Q - B_i W_i - W_i^T B_i^T < 0, \quad (13) \]

\[Q A_i^T + A_i Q + Q A_i^T + A_i Q - B_i W_i - W_i^T B_i^T - B_i W_i - W_i^T B_i^T < 0, \quad i < j \]

\[4. 시뮬레이션 및 결과 고찰 \]

본 절에서는 모의 실험을 통해 제안된 폐기 모델과 설계된 체계에 의해 비선형 흔적 시스템이 효과적으로 제어됨을 보인다.

4.1 Rössler 시스템의 폐기 모델

Rössler 시스템의 동적 특성은 식 (15)과 같다. 식 (15)의 동적 특성을 폐기 모델로 나타내기 위해 다음을 정의하면,

\[x = [x \ y \ z]^T, \ x \in [-d \ d] \]

다음의 폐기 모델로 나타낼 수 있다.

Rule 1: IF \(x \) is \(M_1 \),

THEN \(\dot{x}(t) = A_1 x(t) + C \)

Rule 2: IF \(x \) is \(M_2 \),

THEN \(\dot{x}(t) = A_2 x(t) + C \)

여기서

\[A_1 = \begin{bmatrix} 0 & -1 & -1 \\ 1 & a & 0 \\ 0 & 0 & d-c \end{bmatrix} \]

\[A_2 = \begin{bmatrix} 0 & -1 & -1 \\ 1 & a & 0 \\ 0 & 0 & d-c \end{bmatrix} \]

\[C = \begin{bmatrix} 0 \\ 0 \\ b \end{bmatrix} \]

\[a = 0.2, \quad b = 0.2, \quad c = 5.7, \quad d = 15 \]

폐기 모델에 사용되는 소속 함수는 그림 2와 같다.

![그림 2 Membership function of fuzzy model](image)

그림에서 \(M_1 = \frac{1}{2} + \frac{x}{2d} \), \(M_2 = \frac{1}{2} - \frac{x}{2d} \)이다.

4.2 Rössler 시스템의 폐기 제어

제어 입력을 갖는 Rössler 시스템은 식 (15)과 같다.

\[\dot{x} = -y - z + u_1 \]

\[\dot{y} = x + ay + u_2 \]

\[\dot{z} = b + xz - cz + u_3 \]

식 (15)과 같은 Rössler 시스템을 폐기 모델로 나타내면 다음과 같다.

Rule 1: IF \(x \) is \(M_1 \),
THEN \(\dot{x}(t) = A_1 x(t) + B u(t) + C \)
Rule 2: IF \(x \) is \(M_2 \),

THEN \(\dot{x}(t) = A_2 x(t) + B u(t) + C \)
y기시 행렬 \(B \)는 다음과 같다.
\[
B = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]
본 논문에서는 위기 제어기를 설계하기 위해 PDC 방
법을 적용하여 얻어진 결과는 다음과 같다.
Rule 1: IF \(x \) is \(M_1 \),

THEN \(\dot{u}(t) = -F_1 x(t) \)
Rule 2: IF \(x \) is \(M_2 \),

THEN \(\dot{u}(t) = -F_2 x(t) \)
결과적으로 전체 PDC 파지 제어기는 다음과 같다.
\[
\dot{u} = -w_1 F_1 x - w_2 F_2 x
\]
\(F_1 \)과 \(F_2 \)를 구성하기 위해 정리 3의 \(P \)와 \(W \)을
이용하여, 이것은 LMI 알고리즘을 이용하여 쉽게 구할
수 있다. LMI 알고리즘을 이용하여 계산된 \(Q \)와 \(W \)
는 다음과 같다.
\[
Q = P^{-1} = \begin{bmatrix}
47.1825 & 0 & 0 \\
0 & 47.1825 & 0 \\
0 & 0 & 47.1825
\end{bmatrix}
\]
\[
W_1 = \begin{bmatrix}
15.7275 & -129.9131 & 175.0391 \\
-129.9131 & 25.1640 & 3.6761 \\
-222.2216 & -3.6761 & 454.5251
\end{bmatrix}
\]
\[
W_2 = \begin{bmatrix}
15.7275 & 78.6801 & -23.5025 \\
-78.6801 & 25.1640 & 0.0000 \\
-23.5025 & 0.0000 & 960.9510
\end{bmatrix}
\]
\[
F_1 = W_1 Q^{-1} = W_1 P = \begin{bmatrix}
0.3333 & -2.7534 & 3.7098 \\
2.7534 & 0.5333 & 0.0779 \\
4.7098 & -0.0779 & 9.6333
\end{bmatrix}
\]
\[
F_2 = W_2 Q^{-1} = W_2 P = \begin{bmatrix}
0.3333 & 1.6676 & -0.4981 \\
-1.6676 & 0.5333 & 0.0000 \\
-0.9019 & 0.0000 & -20.3667
\end{bmatrix}
\]
그림 3은 제어 입력에 적용되기 전의 주의 시간에 따라
용도면을 나타낸 것이다. Rössler 시스템의 신호에 제
어 입력을 인가했을 때 안정한 영역으로 수렴하는 것
을 볼 수 있다. 이에 제어 입력은 \(t = 70 \)일 때 인가
되었다.

5. 결론
본 논문에서는 파지 모델과 PDC 제어 설계에 기초하
여 비선형 혼돈 시스템을 효과적으로 제어할 수 있는
비선형 파지 제어기를 설계하였다. 안정도 해석과 제
어 설계 문제는 선형 행렬 부등식 (LMI) 문제로 나타낼
수 있으며, 또한 LMI 문제는 convex 최적화 문제로
설계 문제를 풀어낼 수 있다. 설계된 파지 제어기를 연속 시
간 혼돈 비선형 시스템인 Rössler 시스템에 적용하여
일어난 시뮬레이션 결과로부터 안정한 영역으로 수렴
하는 것을 확인하였다.

![그림 3 Rössler 시스템의 시간 응답](image)

Fig. 3 Time response of Rössler system

6. 참고 문헌
[4] 오기종, 주진만, 박광성, 박진배, 최용호, "신경 최
호법을 이용한 혼돈 비선형 시스템의 지능 제어에
[5] 오준섭, 최용호, 박진배, "혼돈 비선형 시스템을 위
한 파지 제어기의 설계에 관한 연구", 대한전자공