웨이브렛 변환 영역에서의 질감 유사성을 이용한 차량검지 및 차종분류

임재환, 박종선, 이상섭, 김남철
경북대학교 전자공학과

Vehicle Detection and Classification Using Textural Similarity in Wavelet Transformed Domain

Chae Whan Lim, Jong Sun Park, Chang Sup Lee, and Nam Chul Kim
Dept. of Electronic Eng., Kyungpook National University
nckim@ee.kyungpook.ac.kr

Abstract

In this paper, we propose an efficient vehicle detection and classification algorithm for an electronic toll collection, which is based on shadow robust vehicle presence test. In order to improve the performance of vehicle presence test, we use correlation coefficients between wavelet transformed input and reference images, which takes advantage of textural similarity. We compare the performance of the vehicle presence test with those of some conventional approaches that use variance of frame difference. Experimental results from field tests show that the proposed vehicle detection and classification algorithm performs well even under abrupt intensity change due to the characteristics of sensor and occurrence of shadow.

I. 서론

통계트 포괄을 위해 설치된 무드 감지기 혹은 암 렌 시양 검지기는 통과 차량과의 지속적인 접촉에 의해 갖은 수리 및 주가적인 조치를 필요로 하게 된다. 이러한 접촉형 방식의 감지기는 유치 보수에 의한 비용이 소비되기 때문에 빠른 비경통형 영상 감지기로 대체하려는 많은 연구가 이루어 왔다[1-5]. 초기의 영상 감지기는 웨이브렛 변환[6]에 의해 영상 영역의 구분을 돕고 차량의 감지와 차종 구분을 위한 방식을 구현하였다[1,2]. 이후에 제시된 방법에서는 변화가 감지되면 변화가 있는 영역을 추출하여 그룹화하고 사각형으로 감지하거나 변화 정보로 3차원 차이는 프레임에 정합시켜 지속적으로 부사함으로써 차양을 검지하고 사각형의 크기 혹은 정합

로 추적하여 차량을 검지하고 사각형의 크기 혹은 정합

된 프레임의 보양을 이용하여 차량을 구분한 것이 있다

[3-5]. 이 방법은 초기의 방법에 비해 훨씬 안정적이고

더 정확한 성능을 보이지만 알고리즘의 복잡성 때문에 실시간 처리에 상당히 어려움이 있다. 또한, 이들 방법

들은 모두 그림자에 대해서 문제를 가지고 있다. 그림

자가 관측되는 영역영상에서는 그림자 영역의 평균과

분산 없이 각각치는 영상 정보를 나타내는데, 이러한 변화는 중중 그림자 영역을 차량으로 오전하도록 하여 잘못된

차량검지 및 차종분류 결과를 야기한다. 이 논문에서는 그림자에 강한 특성을 사용한 차

량검지 및 차종분류 알고리즘을 제안하였다. 제안된 알

고리즘에서는 웨이브렛 변환[6]에 의해 영상 영역의 구분을

기반으로 구분해 차량의 유상성을 비교함으로써

기존의 방법들에서 없었던 그림자 영역을 효과

적으로 관리할 수 있었고 차량검지 및 차종분류의 성능과

을 향상시킬 수 있었다. 제안된 알고리즘의 성능을 평가하기 위하여 실시간으로 차량검지 및 차종분류

하는 시스템을 구현하고 제안된 알고리즘을 적용하여

통계트 험달에서 동작하는 차량들에 대하여 직접 알

고리즘의 유용성과 성능을 검증하였다.

II. 영상 검지기

1. 기존의 영상 검지기

기존에 연구되던 영상 검지기들은 주로 사각리

트 포획 장치 및 포획장치의 목적으로 연구되었기 때

문에 아래의 그림자와 같이 임의의 기존에 설치된

카메라에서 사각리 도로의 및 개 차량을 동시에 바라보
도목 구성되어 있다[1-5].

그림 1. 기존의 영상 검지기 구성

이때 아래의 식과 같이 차량이 없을 때에 검지된 차량의 영상 $r(x,t)$ 가 현재 위치는 입력영상 $f(x,t)$ 와의 차
영상에 대한 신호크기 혹은 분산값 $\sigma_{\text{net}}^2(x,t)$ 을 이진화
함으로써 차량을 검지하고 이와 같이 검지되는 영역을 지속적으로 추적한다.

\begin{align}
 P(x,t) &= \text{binary}(\sigma_{\text{net}}^2(x,t)) \tag{1} \\
 P(x,t) &= \text{binary}(f(x,t) - r(x,t)) \tag{2}
\end{align}

여기서 binary 는 분석값이 Th 인 이진화 연산을 나타
낸다. 이와 같이 검지된 차량 영역에 대해서 검지된 영
적 혹은 검지된 영역에 대해 미리 정해놓은 3 차원 보
먼들과의 경계를 바탕으로 차량을 분류한다.

이러한 영상 검지기는 물체이트 파킹 시스템으로 적
용하기에는 안 기자의 문제가 있는데, 우선 차량 구분
시 검지된 영역의 변동을 사용하거나 차량의 형태를 이
용한 방법은 최종 분류 결과에 많은 오류가 생길 수
있다. 검지된 영역의 변동에 따라서 차량 수면에 발생
하는 것이 아니라 검지범위가 값의 프레임간 급격한 변
화, 차량 뒤로 뒤따르는 변환의 적은 부분이 문제가 될 수 있다. 차량의 형태면을 이용한 경우에는 대체로 트럭,
지프차, 승용차, 버스 등은 무인 노동이 분류가 정확
될 수 있으나 같은 형태이면서 크기가 달라 파급시 다
른 종류에 분류되어야 할 때 문제가 발생한다. 다음으
로 차량 검지기에도 위와 같이 그립자, 영상의 프레임
간 타기 값의 변환, 차량 뒤로 뒤따르는 문제가 있을까
게 된다.

2. 제안된 영상 검지기

제안된 영상 검지기는 물체이트 파킹을 목적으로 하고 있으며 앞서 연구되어 왔던 영상 검지기는 다
른 구성과가 필요하다. 우선 차종분류를 위해 국내
운행중인 차량의 사양을 조사한 결과 차량 전폭, 차량
바퀴폭, 운전 거리등에 의해 차종이 구분될 수 있다는
것을 알 수 있었다. 본 논문에서는 이중에서 차량 전폭
은 측정함으로써 차종 분류를 하도록 하고 있다. 단일
카메라로 전폭을 측정할 경우 차량의 높이에 따라 발생
하는 전폭측정 오차를 줄이고 정확한 전폭을 측정하기

위해 아래의 그림과 같이 구성된 두 개의 카메라를 이
용한다. 이때 각 카메라로부터 획득되는 영상에서 동계
이트 전폭 차량을 검지하고 차량의 미리, 부분에서 각
카메라가 위치하고 있는 측의 도로 가로자리로부터 차
량의 각측면 경계까지의 거리를 추정한다. 추정된 거리
의 합과 축소 도로 폭과의 차로써 최종적인 차량의 전
폭을 추정하고 이들 기준으로 4종의 차종을 구분하게
된다.

(b) 제안된 영상 검지기의 화면 구성

그림 2. 제안된 영상 검지기의 구성

차량 검지와 차종 분류 알고리즘은 아래의 그림과 같다.

그림 3. 차량 검지 및 차종 분류 알고리즘

차량 검지의 경우 화면에서 차량이 이동하는 정도 상
에 위치하는 검지장 내부에 대해서 차량 존재 탐지성을
하고 차장으로 판단되는 부분의 창대 영역을 차량
차량 검지 결과를 내린다. 이러한 검지장을 각 카메라
별로 두 개 두어 검지시점의 선후 관계와 시간의 흐
1. 차량행성에 대한 분산

기존 영상 검지기[2]에서 효과적으로 사용하고 있는 특성인 (1)의 보일 것 같고 차량행성에 대한 분산은 입력영상과 기준영상이의 국부상관계수 \(\rho_{p}(x,t) \)의 평균에 근본해 보이면 다음과 같은 결과를 얻을 수 있다.

\[
P(x,t) = \frac{\sum_{n}[\rho_{p}(x,t)]}{N_{p}}
\]

여기서, \(Th_{p} = (\sigma_{p}^{2}(x,t) + \sigma_{p}^{2}(x,t) - Th_{p}) \) \(\sigma_{p}^{2}(x,t) \) 이며, \(\sigma_{p}^{2}(x,t) \leq Th_{p} \leq 4\sigma_{p}^{2}(x,t) \) 이다. 즉, 차량행성에 대한 분산을 특징으로 하며 영상은 입력영상과 기준영상이의 국부상관계수의 평균에 따라서 상황에 따라 적절하게 얻은 분산값을 적용하고 있음을 알 수 있다.

2. 원영상에 대한 국부상관계수

임력차량영상 \(f_{p}(x,t) \) 또는 임력도로영상 \(f_{d}(x,t) \)의 차량영상 \(n(x,t) \) 혹은 도로영상 \(b(x,t) \)의 평균이 0, 분산이 \(\sigma_{n}^{2} \)인 가우설의 방향변환을 \(n(x,t) \)이 더해진 형태의 영상이므로 적절하다고 하며, 임력영상과 기존영상 사이의 국부상관계수는 아래의 식과 같이 각 영상편의 각각의 임력변이 차량사진을 이용한 차량행성 및 차량행선을 분석한다.

\[
\rho_{p}(x,t) = \frac{\sum_{n}[\rho_{p}(x,t) \cdot \rho_{d}(x,t)]}{\sum_{n}[\rho_{p}(x,t)] + \sum_{n}[\rho_{d}(x,t)]}
\]

여기서, \(0 < \sigma_{p}^{2} < 1, 0 < \sigma_{d}^{2} < 1 \)는 각각 아래 식과 같이 주어지는 C형실질형의 차량체도와 C형실사의 적합도의 산발관측신호에 대한 D형신호의 산출조건을 나타낸다.

\[
\sigma_{p}^{2} = \frac{\sigma_{p}^{2}}{\sigma_{d}^{2}}
\]

3. 응용에 대한 국부상관계수

임력변화 영상에 대한 차량행성과 기존영상의 국부상관계수를 구해보면 아래의 식과 같이 산출조건을 갖는 도로상의 차량행성 및 차량행선을 분석한다.

\[
\rho_{p}(x,t) = \frac{\sum_{n}[\rho_{p}(x,t) \cdot \rho_{d}(x,t)]}{\sum_{n}[\rho_{p}(x,t)] + \sum_{n}[\rho_{d}(x,t)]}
\]

여기서, \(j \)는 도로상의 차량행성과의 차량행성의 적합도를 갖는 것으로 나타내는데 기존영상의 산출조건에서의 국부상관계수 분포가 적합한 영상을 받는 것으로 나타나 있는데 실제로는 도로상의 적합도를 갖는 스키에 입력해 도로상의 차량행성과 기존영상이의 국부상관계수 분포의 평균이 적합한 값을 보이는 것을 볼 수 있다. 그러므로 적합한 산출조건을 선택하면 적합한 결과를 나타내는데 신흥의 산출조건이 크므로 산출조건이 적합한 적합도가 전부 다르게 나타나므로 차량행성 판단이 잘 된다.
IV. 실험 및 고찰

통계적 접근방법에 대해 획득한 영상에 대하여 차량 존재 도어트에 사용하는 특정인 국부상관계수의 분포를 원영상의 경우, 테이블론 환원 간략신호의 경우, 그리고 테이블론 환원 상세신호의 경우에 대해 아래의 그림과 같이 차량영역과 도로영역에 대한 분포를 비교하였다. 특히 도로영역에 관해서는 그림자나 달린 도로와 그림자가 없는 도로의 경우로 나누어 분포를 비교하여 보이고 있다.

![차량 존재 도어트 성능 비교](그림 5)

제안된 알고리즘의 차량검출 및 차량분류 성능 분석을 위하여 두 개의 TMS320C30 DSP로 구성하고 대구화원 토해트에 설치하여 97년 5월부터 97년 10월까지 9개월에 걸쳐서 도어트를 하였다. 초기 6개월의 검증 실험에서 알고리즘의 성능화 되었으며 마지막 3개월의 실험에서 알고리즘의 성능이 검증되었다. 많은 난선에 따르 그림자의 영향이 있었음에도 불구하고 차량 도어트를 통과하는 200개 이상의 차량에 대해 실험한 현장시험 결과는 14 frames/sec의 처리 속도로써 차량 계수에 있어서 99.5 ~ 100%의 정확도를 차량분류에 있어서는 96.3 ~ 97.9%의 결과를 보이고 있다.

참고문헌