공간벡터 변조법을 적용한 BLDC 전동기에 대한 슬라이딩 모드 속도 제어기 설계

최중경, 박수영, 황정원
창원대학교 공과대학 전자공학과
ckj@sarim.changwon.ac.kr, psy@sarim.changwon.ac.kr, juice@hwing.changwon.ac.kr

Design of a Sliding Mode Speed Controller for the BLDC Motor
Using the Space Vector Modulation Technique

Jung Keyong Choi*, Seung Yub Park*, Chung Won Hwang*
*Dept. of Electronic Eng., Changwon National University
cjk@sarim.changwon.ac.kr, psy@sarim.changwon.ac.kr, worinara@hwing.changwon.ac.kr

Abstract

This paper presents a speed controller for the Sinusoidal type BLDC motor using the sliding mode. Since the sliding mode control has some practical limitations such as the chattering phenomenon and reaching phase problems, the technique of overcoming these limitations is proposed in a practical realization. This proposed speed control technique is composed of an smooth integral variable structure control (IVSC), and chattering prediction method.

I. 서론

BLDC 전동기는 전동기의 정류부가 기계적 정류에서 전자적으로 고정된 브러시(Brush)와 정류자(Commutator)의 역할로, 제어의 완화와 소음저감, 스파크(Spark) 및 잔류(Noise) 문제를 해결하기 위하여 슬라이딩 모드 제어가 주로 사용되고 있다. 슬라이딩 모드 제어는 고정전력 공학에 따라 구형과 정향제로 구분되며, 구형 주로 레이나와 조향 제어에 사용되어 있으며, 정향 주로는 구형과 정향 제어에 사용된다. 그리고, 구형과 정향 제어는 각각의 변환을 위해서는 정류자와 브러시의 위치를 인지해야 하며, 이를 위해 슬라이딩 모드 제어는 전동기의 정류부가 고정된 브러시와 브러시의 위치를 인지해야 한다.

재정공학 브러시 전동기는 브러시 구형 전동기와 같이 브러시가 없는 선형적인 브러시 구형 전동기의 정류부가 고정된 브러시 전동기에 있어 정향공학의 오작동을 요구되므로 고정된 사인-코사인 방

II. 구형 전동기 제어를 적용한 정향공학
BLDC 전동기의 속도 제어기 설계
2.1 정형화된 BLD C 전동기의 벡터제어를 위한 상태방정식 유도

BLDC 전동기의 속도제어를 위한 시스템의 논리도는 그림 1에 나타내었다. 전동기의 속도제어는 실제 속도가 기준치를 추정하도록 하는 속도 제어부와, 속도 제어부에서 요구하는 기준전류를 전동기에 공급하기 위하여 인버터를 구동하는 부분인 전류 제어부로 나누어진다.

![그림 1: 브리세리스 직류전동기의 서보용 속도 제어 시스템의 논리도](image)

BLDC 전동기의 전압 방정식과 토클 식을 동기속도 회전 기준 좌표계의 dq축 상에서 표현하면 아래 식과 같다.

\[
\begin{align*}
\nu_{dq} &= r_\alpha i_d + bl_\alpha i_q + w\omega l_d \frac{dl_d}{dt} \\
\nu_{dq} &= r_\beta i_d + bl_\beta i_q - w\omega l_q \frac{dl_q}{dt} \\
T_e &= \frac{3}{2} P \frac{d}{dt} (\lambda_{d\alpha} i_d + \lambda_{q\beta} i_q) \\
T_e &= \frac{3}{2} P (\psi_f i_d + (L_d - L_q) i_d i_q) \\
\lambda_{d\alpha} &= L_d i_d, \quad \lambda_{q\beta} = L_q i_q + \psi_f
\end{align*}
\]

그리고, BLDC 전동기의 상태 방정식은 다음과 같다.

\[
\begin{align*}
\dot{i}_{dq} &= \begin{bmatrix} -r_\alpha & -\frac{\psi_f}{L_d} \\ \frac{K_f}{L_q} & -B \\ \frac{L_q}{L_d} \end{bmatrix} i_{dq} + \begin{bmatrix} \frac{v_{dq}}{L_d} \\ \frac{v_{dq}}{L_q} \\ \frac{v_{dq}}{L_d} \end{bmatrix} \\
T_e &= \frac{3}{2} P \frac{d}{dt} \psi_f i_d
\end{align*}
\]

2.2 가변주파 제어 방법

2.2.1 관측기를 이용한 속도 제어에 성과

만약 관측기가 알려지지 않은 외부 변동에 비하여 충분히 빠른 응답특성을 가지고 아래와 같이 나타낼 수 있다.

\[
\frac{dt}{dt} = 0
\]

또한 관측을 이용한 시스템 모델은 가속도방을 만족하므로 정명 불가능한 상태 외부 f가 추정 가능하고, 추정하기 위한 페르포 상태 관측기는 다음과 같다.

\[
\begin{align*}
\begin{bmatrix} \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix} &= \begin{bmatrix} 0 & -B \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
0 & -B \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
0 & -B \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix} \begin{bmatrix} \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix} \\
+ \begin{bmatrix} K_{d\alpha} \\
K_{d\beta} \\
K_{q\alpha} \\
K_{q\beta}
\end{bmatrix} \begin{bmatrix} w - \omega \\
\omega \\
\omega
\end{bmatrix}
\end{align*}
\]

식(2.6)로부터 관측기 오차 방정식이 아래와 같이 나타난다.

\[
\begin{align*}
\begin{bmatrix} \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix} &= \begin{bmatrix} 0 & -K_{d\alpha} \\
0 & -K_{d\beta} \\
0 & -K_{q\alpha}
\end{bmatrix} \begin{bmatrix} \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix} \\
+ \begin{bmatrix} -K_{d\alpha} \\
-K_{d\beta} \\
-K_{q\alpha}
\end{bmatrix} \begin{bmatrix} \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix}
\end{align*}
\]

식(2.7)에서 관측기 이득 K1, K2는 같은 보상 성능을 만족시키기 위해서 외란 f의 변동보다 적은 수준을 가정하도록 극값 방식법에 의하여 결정될 수 있다. 재터램을 감소시키기 위해서 추정된 외란 f의 보상 제어에 의해서 알려지지 않은 외란을 상쇄시낼 수 있다. 설계된 제어기의 제어입력의 형성식은 식(2.8)과 같다.

\[
U = \Delta k_i \Delta X_i + \Delta k_p + \Delta k_r
\]

피드 포드 보상 입력은 \(k_i = -\frac{1}{K_p} \)이다.

실제적으로 외란 f를 상수로 가정하였기 때문에 \(f = f \)를 만족하게 한다. 따라서 추정 오차 효과를 제거하기 위해서 적은 양의 입력이 필요하다. 외란 관측기의 추정 오차와 변동량은 식(2.10)에서 알맞게 된다.

\[
\begin{align*}
\begin{bmatrix} \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix} &= \begin{bmatrix} -a & -c \\
-a & -c \\
-a & -c
\end{bmatrix} \begin{bmatrix} \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix} \quad \text{if } S < 0
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix} \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix} &= \begin{bmatrix} -a & -c \\
-a & -c \\
-a & -c
\end{bmatrix} \begin{bmatrix} \frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}} \\
\frac{\dot{\lambda}_{d\alpha}}{\dot{\lambda}_{q\beta}}
\end{bmatrix} \quad \text{if } S > 0
\end{align*}
\]

식(2.10)에서 나타나듯이 가변 입력 이득 성분은 외란 관측기를 이용한 보상 제어에 성공에 의해서 전혀 감소된 것을 알 수 있다. 제어기 및 관측기 시스템의 설계 안정성을 증명하기 위하여 Lyapunov 함수를 이용하였다.
설계하고 미분하면 (2.11)과 같이 된다.
\[\dot{V} = si + f_a e_w e_{\omega} - \frac{1}{K_i} e_{\theta} f' \] (2.11)
여기서, 부하관련 이득 \(K_1 < 0 \) 및 \(K_2 > 0 \)을 선택하면 \(\dot{V} < 0 \)을 만족하며 제어의 진행 기간 동안 슬라이딩 모드 및 응답의 광범위성을 유지하면서 시스템의 점근적 안정을 보장한다.\(^{[6]}\)

2.2 부하 관계 및 시변량을 포함한 IVSC 제어기 설계
본 절에서는 시변량(Time-Varying Terms)이 포함된 가변 이득을 제작하는 제어 입력을 구성하는 슬라이딩
이동 조건식을 만족하면서 전체 안정성을 도출하려는 제어 입력의 폭을 줄이거나 제어기를 저감시키기 위한 슬라이딩 모드 제어 시스템을 제안하고자 한다. 본 장은 단순히
제어기의 입력 이득을 줄인다면, 전체 입력이 감소하게 되어 제어링 현상을 제거할 수 있다. 그러므로, 고정 이득 대신에 아래 식과 같은 시변량 가변 이득
함수를 포함시킨다.
\[\beta \frac{|X_i|}{b} , \quad (\beta > 0) \] (2.12)
가변 이득에 의해 식(2.12)의 시변 이득 성분을 인
가함으로써 부등식을 확실하게 만족시킴과 더불어 이
득 성분의 크기가 제어 과정 중 적절하게 조절되므로 전체
이득의 크기가 어느 정도 줄어들게 된다.\(^{[7]}\)
또한, 오차 \(X_i \) 이 0이 되면 시변 가변 이득 성분도
0이 되고, 가변 이득 성분이 단지 \(\Delta k_f \)로만 구성되
되므로 \(\Delta k_f \)값을 적절히 선택하면 스위칭 조건식은 아
래와 같이 된다.
\[\Delta S^* = 0 \] (2.13)
다시 말해서, 동력 발생식은 스위칭 정점 위에서 존재
하고 더 이상의 진동은 발생하지 않는다. 그리고 파도
상태와 정상상태에서 기존의 가변조 제어기보다
제어링 현상이 감소된다. 식(2.14)은 가변 이득의 선택
시 시변 이득 성분을 포함하도록 한 식이다.
\[\Delta k_i^* = -\frac{(a+c)}{b} \dot{X}_i, \quad \text{if} \quad |X_i| > 0 \]
\[\Delta k_0^* = -\frac{(a+c)}{b} \dot{X}_0 - \beta_i \frac{|X_i|}{b}, \quad \text{if} \quad |X_i| < 0 \]
\[\Delta k_f^* = -\frac{a w_{ref} + \frac{d \\text{ 감속}}{f_0}}{b} - \beta_i \frac{|X_i|}{b}, \quad \text{if} \quad S > 0 \] (2.14)
\[\Delta k_f^* = -\frac{a w_{ref} + \frac{\text{ 감속}}{f_0}}{b} - \beta_i \frac{|X_i|}{b}, \quad \text{if} \quad S < 0 \]
그림 2 제어 입력 풀리드

III. 서보 시스템의 구현
본 연구에서 제어대상으로 선정한 전동기는 일본
Yaskawa사 제품으로서 Slodless 3상 유동형 고전차와 2
극 영구 자석형 회전자를 갖는 정격전압(Rated Voltage) 200V, 정격전류(Rated Current) 2A, 200W급
정밀공학 브러시리스 즉목 전동기이며, 가변조 제어
기 구현하기 위해 브러시리스 즉목 전동기 서보 드
라이버를 원리 디자인으로 구현하며 소프트웨어 서보
설계를 할 수 있도록 한다. 설계된 제어 알고리즘을 수
행하는 주 프로세서로는 Texas Instrument사의 DSP\(^{[8]}\)인
TMS320C31을 사용하였다. IPM 내부에 내장된 각각
의 IGBT 채널 단자와 PWM 폭조조신호를 이용하고,
전용사용을 위해 패널서 아/D 변환기를 사용하였으
며, 속도감출을 하기 위한 엔코더는 1회전 2048
사를 발생하며, 속도에 대한 정밀정보와 특히 적절한
서서 펨스의 손실을 막기 위해 4채널 회로를 구성하여
연속의 수치 4배로 늘려주었다. 제어기로부터 기전
압 벡터가 결정되면 기전의 크기와 크기 조정을 사
용하여 인버터 스위치의 지속 시간을 변화하므로 평균값
이 기전 정압 벡터를 추정할 수 있다. 상대 공간 벡
트름 기법에 의해 계산된 전압 벡터를 진동기에 인가
한다면 정회 변조 PWM에 비해 출력 전압을 4/3배
로 할 수 있고, 3상의 PWM평손이 공간 벡터와 유기
적인 결합으로 스위칭을 평형화하여, 스위칭 횟수를 줄
일 수 있고, 전압 패턴 발생의 소프트웨어 처리로 컨
전 방식들에 비해 하드웨어를 크게 줄일 수 있는 장점
이 있다.

IV. 실험 결과
그림 3은 외환 변동을 관측하여 제어기에 전향제어
를 적용하였을 때의 응답 과정이다. 그러나 입력을 구
성하는 이득들이 특정 값을 기준으로 그 값의 위 아래
로 불안정적으로 변화하기 때문에 제어링 현상이 어느
본 연구는 경험과학 브리시관직 접동기의 속도 제어를 위해 하드웨어 실험 장비를 구현하였고 재차림 작동을 위한 가변구조 제어기를 설계하였다. 직접제어형 브리시관직 접동기의 속도제어기에 제어를 위한 제어기별을 이용한 가변구조 제어를 설계하였고, TMS320C31을 이용하여 전자 디지털화된 하드웨어를 구성하고, 고정적 대신에 시변이동을 참가하여 제어의 현상이 현저히 감소되는 것을 실험을 통해서 이론의 타당성을 입증하여, 가변구조 제어기의 가변입력을 최소화 할 수 있어 제어기의 정성을 향상시켰으며 가변구조 이론의 적용을 확대시켰다.

<참고문헌>