Abstract - Level control in the steam generator of a nuclear power plant is important process. But, the low power operation of nuclear power plant causes nonlinear characteristics and nonminimum phase characteristics (swell and shrink), change of delay. So, we can't lead good results with conventional PID controller. Particularly, the design of controller with constraints is necessary. This paper introduces MPC(Model Predictive Control) with constraints and designs a good performance MPC controller in spite of the input constraints and nonlinear characteristics, non-minimum phase characteristics.

1. 서론
98년도 동계로 보면 우리 나라의 전력 생산에서 원자력 발전이 차지하는 비율이 35%를 넘어서고 있다. 이런 추세로 볼 때 감속목 우리 나라 전력생산에서 원자력발전이 차지하는 비율은 증가할 것으로 보이며 이에 관한 연구가 더욱 많아질 것으로 보인다. 원자력 발전소 건립하는 천문학적인 비용이 들기 가로 무주 보다는 안정적인 운영이 중요하다. 그러나 원자력발전소의 핵심 설비인 증기발생기는 저출력 운전시 발생하는 비적소위성(swell 과 shrink현상) 현상 [1](4)과 급수유량의 불규칙한 제한조건 때문에 안정적이고 효과적인 운전이 어렵며 실제 현장에서는 복잡한 기중자에 의해 수동으로 운전되는 실정이다. 본 논문에서는 저 출력에서의 제한조건을 만족하면서 안정적인 증기발생기의 수위제어를 위해 제작조건이 있는 MPC 이론을 이용하여 증기발생기의 수위제어기계를 설계하였다. 또한 현장에서 사용되는 PI 제어기[4]와 그 성능을 비교함으로써 모델예측제어기의 우수성을 보여 주었다.

2. 본론
2.1 증기발생기의 동 특성
증기발생기의 동 특성은 입력으로 급수유량비용 u(s)와 출력으로는 증기발생기의 수위 y(s), 그리고 축정 가능한 외환(증기유량비용) v(s)로 나타낼 수 있다. 급 수유량과 증기발생기의 비율의 단위계단변환 입력에 의한 증기발생기의 수위응답에 의해 Irving 은 식(1)과 같이 원자력 발전소 증기발생기 모델을 4차의 푸아플러스 전달 함수로 나타내었다.

\[
\begin{align*}
\gamma(s) &= \frac{G_1}{s} [u(s)-v(s)] + \frac{G_2}{s + \tau_1 + 4\pi T^2 + 2\tau_1 s + s^2} u(s) \\
&+ \frac{G_2}{s + \tau_1 + 4\pi T^2 + 2\tau_1 s + s^2} v(s) \\
&+ \frac{G_2}{s + \tau_1 + 4\pi T^2 + 2\tau_1 s + s^2} v(s)
\end{align*}
\]

\(s \) : 라플라스 변수

\(T, \tau_1, \tau_2 \) : 시정수

\(T \) : 기계적 진동 시간

\(G_1 \) : 물의 질량에 의한 영향

\(G_2 \) : 급수유량비용과 증기유량 비율에 의한 swell과 shrink 현상의 크기

\(G_3 \) : 기계적 진동 크기

주변 항, \(\frac{G_1}{s} [u(s)-v(s)] \)은 증기발생기의 실제적인 수위를 나타낸다.

\(\text{을 변환, } \frac{G_2}{s + \tau_1 + 4\pi T^2 + 2\tau_1 s + s^2} u(s) \)은 swell과 shrink 현상에 의한 증기발생기 수위의 영향을 나타낸다. swell 현상은 증기유량이 커지면 증기발생기의 증기압력이 늘어난 전단의 물의 배경현상 때문에 증기발생기의 수위가 높아지는 현상으로 말한다. 또한 급수유량이 증가 하면 상대적으로 증기발생기의 물보다 높은 온도의 물이 많이 유입되어 증기발생기의 물은 전단적인 증기현상이 나타나는데 이 때문에 수위가 높아지는 현상이 발생한다. 이를 shrink 현상이라 한다.

주변 항, \(\frac{G_2}{s + \tau_1 + 4\pi T^2 + 2\tau_1 s + s^2} v(s) \)은 기계적 진동에 의한 수위의 영향을 나타낸다. 토반을 거쳐 재사용 되기 위해 들어오는 물은, 양은 많지만 유속이 느리고 규수관을 통해 들어오는 물의 양이 감자가 증가하면 수위는 떨어지며 약간의 수위를 줄이게 된다. 표 1은 원자로의 power 변화에 따른 식(1)의 계수를 나타낸 것이다.

<table>
<thead>
<tr>
<th>표. 1 power level</th>
<th>따른 증기발생기 모델 계수</th>
</tr>
</thead>
<tbody>
<tr>
<td>power level (%)</td>
<td>G1</td>
</tr>
<tr>
<td>5</td>
<td>0.058</td>
</tr>
<tr>
<td>15</td>
<td>0.058</td>
</tr>
<tr>
<td>30</td>
<td>0.058</td>
</tr>
<tr>
<td>50</td>
<td>0.058</td>
</tr>
<tr>
<td>100</td>
<td>0.058</td>
</tr>
</tbody>
</table>

2.2 제한 조건이 있는 모델예측제어기
다음과 같은 이산시간 상태공간 모델을 고려하자.

\[
x(k+1) = Ax(k) + Bu(k) + B_d \Delta(k) + n_1
\]

\[
y(k) = Cx(k) + Du(k) + n_2
\]

\(d(k) \) : 축정 불가능한 외환

\(n_1, n_2 \) : 측정 불가능한 외환

모델예측제어기는 제 구조 형태의 제어모델이며 일반적 인 구조는 그림 1과 같다. 그림 1에서 State estimate는 이산시간 \(k \)에서 \(i \) 번째의 예측값 \(x(i+k|k) \).
\(y(k+\Delta k) \)를 구하는 것과 같으며 다음과 같이 나타낸다.
\[
x(k+i+1) = Ax(k+i) + Bu(k+i) \\
y(k+i) = Cx(k+i)
\]
\(i = 1, 2, \ldots, p \)

그림. 1 기본적인 MPC 구조도

Optimizer는 Plant로 입력되는 제어입력을 구하는 것에, 이는 외환과 같은 입력을 존재하는 시스템에 대해 식(3)과 같은 성능지표(Cost Function)가 최소가 되는 제어입력을 구하는 것이다.

\[
J_f(k) = \sum_{i=0}^{m-1} (y_d - y(k+i))^T \Gamma_r (y_d - y(k+i)) + \sum_{i=0}^{m-1} u(k+i)^T \Gamma_u u(k+i) + \sum_{i=0}^{m-1} d(k+i)^T \Gamma_d d(k+i)
\]

\(y_d \)는 기준 값이며 \(\Gamma_r, \Gamma_u, \Gamma_d \geq 0 \) 가중치를 나타낸다. 식(3)과 같은 성능지표를 최소로 하는 값을 구하는데 있어서 다음과 같은 제한 조건을 만족하는 제어입력을 구하여야 한다.

제어 입력과 제어입력이 존재한 제한조건:
\[
u_{\text{min}} \leq u(k+i) \leq u_{\text{max}}
\]
\(|d(k+i)| \leq d_{\text{max}} \quad i = 0, 1, 2, \ldots, m-1 \)

\[
x_{\text{min}} \leq x(k+i) \leq x_{\text{max}}
\]

\[
y_{\text{min}} \leq y(k+i) \leq y_{\text{max}}
\]

그림. 2 이산시간 \(k \)에서의 최적화

그림 2는 이산시간 \(k \)에서 제어입력의 최적화 과정을 나타낸 것이다. 여기에서 \(p \)개의 구간에서는 제어입력 주분 \(\Delta u(k) \)이 변하지 않다고 가정한다. 즉 \(k + m - 1 \) 시간 후에는 \(u(k+i) = u(k+m-1) \), \(i = 0 \)이다. 모델에측제어기의 성능은 미래 출력들의 범위로 정의되는 예측구간(prediction horizon)과 원하는 제어목적을 실현하기 위한 미래 제어신헤구간(control horizon)에 달려 있으며 예측구간과 제어구간 그리고 가중치 등의 변수를 잘 동조시키는 것이 중요하다. 그리고 여기에서 구해진 제어입력은 오직 첫 번째 제어입력 \(u(k) \)만 사용이 되고 다음 흐름시간 \(k+1 \)에서는 새로운 \(y(k+1) \), \(\hat{x}(k+1) \)가 업데이트 된다. 때문에 모델에측제어를 RHC(Receding Horizon Control)나 MHC(Moving Horizon Control)이라고도 한다.

2.3 simulation

증기발생기의 수위제어를 하는데 있어 저 출력(20% 미만)에서 발생하는 비 최소위상 특성 때문에 제어의 어려움이 있다. 그러므로 출력이 5%와 15%의 두 가지 상황을 가정하여 simulation을 수행하였다. 그리고 모델에측제어기를 이용한 증기발생기의 수위제어의 실험결과의 유용성을 보여 주기 위해서 일반적으로 증기발생기 수위 제어에 많이 이용되는 PI 제어기와 비교하여 그 우수성 을 증명하였다. 저 출력에서 PI제어기의 일반적인 구조 는 그림 (3)과 같다.

\[
\begin{align*}
K_p & = \frac{K_a}{s} \\
K_i & = \frac{K_g}{s}
\end{align*}
\]

그림. 3 증기발생기의 PI 제어기 구조도

제어입력은, 출력 오차가 크기 때문에 유량측정 신호는 사용하지 않고 기준 값과 출력 값의 오차를 이용하여 구한다. 때문에 제어입력은 식(4)과 같이 나타낼 수 있다.

\[
u(k) = u(k-1) + K_p [yD(k) - yD(k-1)] + \frac{K_i}{2} [yD(k) + yD(k-1)]
\]

\[
yD(k) = y_d - y(k), \quad K_p = 0.5, \quad K_i = 18000
\]

증기발생기의 모델에측 제어입력은 식(3)의 비용함수 (Cost function)가 최소가 되는 제어입력을 찾는 것이다. 본 논문에서는 급수유량 비율(feed water flow rate)이 제어입력이 된다. 급수유량은 물리적으로 0보다 작을 수 없으므로 다음과 같은 제한조건을 가진다.

\[
0(\%) \leq u(k) \leq 100(\%)
\]

simulation 결과는 그림 (4)에서 그림 (9)과 같다. 기 준 수위 level의 변화에도 적절한 수위제어가 되어 보이 기 위해 수위 level을 2000구간까지는 기준 수위 level 을 40%, 2001구간부터 4000구간까지는 70%, 401구간부터 6000구간까지는 40%의 기준 수위 level을 설정하였다. 그림(4)과 (5)는 제한조건이 없는 모델에측제어기와 제한조건이 없는 모델에측제어기를 증기발생기에서 적용한 결과이다. 제한조건이 없을 시에는 수위 수위에 비율 수준은 하지만 제어입력은 몰래기한을 절제되어야 할 때가 있다. 그림(6)에서 그림(9)에서는 PI제어기와 모델에측제어기 를 증기발생기에 적용시의 비교 결과인데 그림(6)과
(7)는 power level이 5%일 때 결과이다. 그럼에도 모델예측제어기가 입력 제한조건을 만족하면서 오버슈트 (overshoot)없이 기준 수위 값에 적절히 추적함을 알 수 있다. 그림(7)은 급수유량 비율과 증기유량 비율의 결과가 같다. 모두 기준 값에 적절히 추적함을 알 수 있다. 그림(8)과 (9)는 power level이 15%일 때의 결과이다. 그림에서 알 수 있듯이 모델에측제어기가 입력 제한조건을 만족하면서 PI제어기보다 훨씬 좋은 성능을 가질 수 있다. 그림 (9)는 급수유량비율과 증기유량 비율의 결과를 나타낸 것이다.

그림 4 제한조건이 없을 때와 제한조건이 있을 때 예측제어기 수위제어

그림 5 제한조건이 없을 때와 제한조건이 있을 때 모델 예측체어기 제어입력

그림 6 power level이 5%일 때의 제한조건이 있는 모델 예측제어기와 PI 제어기의 수위제어

그림 7 power level이 5%일 때의 급수유량 비율과 증기유량 비율

그림 8 power level이 15%일 때의 제한조건이 있는 모델예측제어기와 PI 제어기의 수위제어

그림 9 power level이 15%일 때의 급수유량 비율과 증기유량 비율

3. 결 론

본 논문에서는 제한조건이 있는 모델예측제어기를 이용하여 원리적 발전소의 증기발생기의 수위 제어에 적용하는 문제를 다루었다. 결과에서 알 수 있듯이 제어입력은 제한조건을 만족하면서 적절한 수위제어가 됐음을 알았다. 또한 PI 제어기와 그 성능을 비교함으로써 제한조건이 있는 모델예측제어기의 성능이 우수함을 증명하였 다. 앞으로도 제한조건을 가지는 모델예측제어기의 안정성 과 증기발생기에 어떠한 이상이 있을 시 이에 대하여도 전담한 제어를 하는 하용제어에 관한 연구가 필요하다.

참 고 문 헌

(1) 한진욱, 이창구 "증기발생기 수위제어를 위한 실시간 자기 동조 피저-PID제어기 개발" 제 13차 한국자동제어 학술회 논 문집 pp.1265-1265,1998
(2) 손원기, 권영규 "제어조작을 갖는 다변수 모델예측제어기의 보일러 시스템 적용" 제어, 자동화, 시스템공학회 논문지 제3권 6.5 pp.582-587,1997

본 연구는 1999년도 기초전력공학 공동연구소 단기과제 지원에 의해 수행되었음