직립 탑공판 배열을 이용한 흡음장치 설계

이종무*, 조일형**, 임용곤***
*한국해양연구소 산학협력공학본소
**제주대학교 해양산업공학부

Design of Sound Absorbing System Using the Array of Upright Punching Plates

Chong-moo Lee*, Yong-kon Lim**, B-hyung Cho***
*Korea Ocean Research and Development Institute
**Cheju University
E-mail : jmlee@kriso.re.kr

요 약

tap 공조물은 용과의 에너지를 감소시키는 특성을 가지고 있어 무항실의 벽에 많이 이용되고 있다. 음원으로부터 발생한 음과 탑공판을 통과할 때 탑공판의 작은 구멍을 통해 긴장 체트가 형성되어 접촉에 의한 막기가 일어나 용과 에너지는 일부분이 열에너지로 소멸된다. 탑공판의 작은 구멍을 통과하면서 발생하는 물리적 현상은 음향학 분야에서 많은 연구가 이뤄졌다. 탑공판의 앞뒤의 음압(Acoustic Pressure)의 차이를 수동에 따른 것에 비례하는 항력량(Drag Term)과 가속도에 비례하는 항성량(Inertia Term)의 값으로 표현하였고, 각 항에 포함된 계수들을 실험이나 간단한 계산을 통해서 구하는 방법을 제시하였다.

ABSTRACT

Due to its characteristics of acoustic wave energy absorption, punched structures are generally applied on the wall of anechoic room. When the acoustic wave propagates through the punched plates, its energy dissipates into thermal energy by flow separation induced from the viscosity of acoustic media. The acoustic pressure difference between the for-side and the aft-side of punched plate can be represented by the sum of drag term proportional to square of velocity and inertia term proportional to acceleration. The way to get the coefficients of the terms by an experiment or relatively simple calculation is introduced.

1. 서 론

탑공판이 의한 증폭(Gravity Waves)의 반사율(Reflection Coefficient)과 투과율(Transmission Coefficient)은 Chwang(1984)에 의하여 계산되었 다. 그의 한 뜻에 배이 있는 2차원 반 무한(Semi-Infinity) 수조내 탑공판이 설치되어 있을 때 탑공판의 이용 반사율을 계산하였다. 그들의 계산결과에 의하면 입사각의 관(λ)과 탑공판과 막막사이의 거리(L)사이의 관계가

\[\lambda = \frac{4L}{1+2m} \quad (m=0,1,2,3,\ldots) \]

일 때 탑공판에 의한 반사율이 최소가 될 것을 밝혔다. Madsen(1983)은 직접 탑공판을 해양수조에 설치할 소파기(Wave Absorber)에 적용한 문제를 다왔는데, 공극뢰이 다른 여러개의 탑공판을 설치했을 때 반사율의 차이를 실험을 통하여 구하였다. 그 들은 공극뢰이 다른 탑공판들을 효과적으로 배치하면 전체 시스템의 반사율을 5%이내로 유지할 수 있음을 밝혔다. 실제로 직접 탑공판을 이용한 소파장치는 캐나다 NRC와 미국의 OTRC의 해양

공학수조에서 현재 운용중에 있다. 여러개의 탑공 판 배열에 의한 반사율 계산은 Tuw, Lin(1990)에 의하여 선형철원이론을 가정하여 수행되었다. 이때 일반적에 의한 항력계수는 간단한 설계를 통

-386-
직렬 탑골판 배열을 이용한 흡수장치 설계

하여 얻었으며, 탑골판에 의한 관성항은 무시되었고, 간단한 실험으로부터 얻어진 압력계수들은 이용하여 공극을 서로 다른 탑골판 배치에 따른 반사율을 계산하였다. 그들의 결론에 의하면, 바람 침묵으로 만나는 탑골판은 공극이 상대적으로 큰 것을 사용하며 그 후의 탑골판은 적절적으로 공극이 작은 탑골판을 설치해 압박파의 에너지를 최소화할 수 있다는 사실을 2차원 계산을 통하여 밝혔다.

본 연구에서는 KRISO에서 현재 건설중인 모항수조에 설치할 흡수장치, 여러가지의 직렬 탑골판을 이용한 시스템으로 구성할 때 공극이 서로 다른 탑골판에 의한 반사율과 탑골판 배치에 따른 반사율을 수치계산을 통하여 살펴보았다. 이에 대한 계산결과를 이용하여 2차원 수조에서 기초적인 설계를 수행할 것이며 이를 토대로 해양수조에 설치될 두면수조 설계에 적용할 예정이다.

II. 문제의 정식화

Fig.1과 같이 두면수조내에 직렬 탑골판이 수파의 전행방향과 수직으로 놓여 있다고 생각하자. 수파는 각각의 크고 작은 수파를 갖는 탑골판의 두께에 이어져서 옵파의 파장에 비하여 탑골판의 두께는 아주 작고, 탑골판은 옵파 와 직사각 형이 변형되지 않도록 가정하자.

\[
\nabla \cdot U = 0 \tag{1}
\]

\[
\frac{\partial U}{\partial t} = - \frac{\nabla P}{\rho} - f w U - C_w \frac{1 - \varepsilon}{\varepsilon} \frac{\partial U}{\partial t}
\]

여기서 \(U\)는 탑골판 내부의 수압속도(Seepage Velocity), \(P\)는 변동압력(Dynamic Pressure)을 나타낸다. 계수 \(e, f, C_w\)는 각각 공극율(Porosity), 박력에 의한 압력계수(Drag Coefficient), 무가격량계수(Added Mass Coefficient)를 나타낸다. \(f, C_w\)는 실내적에 어떠한 간섭도 없어, 유체의 절성, 탑골판의 국부형상(Local Shape), 거칠기 정도(Roughness), 공극율에 따라 변한다.

정도 속도와 압력수의 수파 수를 갖는 조류의 수동을 갖는다고 가정하면, \(U, P\)는 다음과 같이 시간과 공간함수로 분리할 수 있다.

\[
U = Re \{ e(w e^{-iw}) \} \tag{2}
\]

\[
P = Re \{ e^{-iw} \} \tag{3}
\]

\[
\nabla \cdot u = 0, \quad \nabla \cdot (p + \rho u u) = 0 \tag{4,5}
\]

\[
\sigma = -\frac{\rho_u}{(\rho_\infty - \rho_u)}(\rho_\infty \frac{\partial R}{\partial x}) \tag{6}
\]

이다. 여기서 \(\rho_u\)는 물의 밀도이다. 탑골판의 특성은 나타내는 \(R\)의 실수부와 허수부는 각각 수유와 압력에 바hazi하는 형식의 항과 가속도에 바hazi하는 형식의 항을 나타낸다.

계속과 압력의 수평방향 변화율이 수속방향 변화율에 비하여 크므로 티크은 다음과 같이 1차원 문제로 바꾼다.

\[
\frac{\partial u}{\partial x} = 0, \quad \frac{\partial P}{\partial x} + \rho u \frac{\partial u}{\partial x} = 0
\]

Fig.2 Definition sketch of noise barrier using the array of upright punching plates

타공판 내부에서의 유동을 묘기 위하여 유동은 아래와 같은 연속방정식과 Euler 방정식을 만족하여야 한다.
을 유도하기 위하여 \(x = 0 \)과 \(x = b \)에서 정합조건들을 적용하자.

\[
\begin{align*}
\nu_0 = \nu_B = \varepsilon \nu \\
\rho_0 = \rho_B = \rho_0 \\
\text{여기서} \; \nu \; \text{는 탑공판의 안과 밖의 물질을 나타낸다. \; \nu(s) \text{는} \; \nu \text{의 대체로 탑공판의 \(\nu = 0 \)의 높이로 \nu \text{를 그림하여 정리하면 아래와 같은 관계식을 얻을 수 있다.}}
\end{align*}
\]

\[
\begin{align*}
\nu_0 = \nu_B = \varepsilon \nu \\
\rho_0 = \rho_B = \rho_0 \\
\text{타공판의 두께(\(\delta \)가 작고 약간 탑공판이 \(x = 0 \)의 높이로 \text{만 해고하면 식(8)로부터 탑공판에서의 아래와 같은 관계식을 얻을 수 있다.}}
\end{align*}
\]

\[
\begin{align*}
\nu_0 = \nu_B = \varepsilon \nu \\
\rho_0 = \rho_B = \rho_0 \\
\text{여기서} \; G \; \text{는 \(R \)과 \(R \)의 값으로 탑공판의 종류(\(G \)와 \(R \)의 비율)\text{이} \beta \text{과 \(R \)의 값으로 \text{따라서 \(G \)은 \text{상수이며 탑공판에 \text{작용하는 \(G \)과 \(R \)의 결과가 \text{있다.}}
\end{align*}
\]

\[
\begin{align*}
\nu_0 = \nu_B = \varepsilon \nu \\
\rho_0 = \rho_B = \rho_0 \\
\text{또한 \(x \rightarrow \infty \)에서 아래와 같이 방사조건(\text{Radiation Condition})을 만족한다.}
\end{align*}
\]

\[
\begin{align*}
P_j = e^{ikx} \\
\text{위에서 주어진 지반방정식과 경계조건들을 만족하는 각 \(j \)영역의 \text{모든 \text{음직들 \text{정리하면 다음과 같다.}}}
\end{align*}
\]

\[
\begin{align*}
P_0 = (e^{ikx} + R_0 e^{-ikx}) \\
P_1 = (T_1 e^{ikx} + R_1 e^{-ikx}) \\
P_j = (T_j e^{ikx} + R_j e^{-ikx}) \\
P_{N-1} = T_{N-1}(e^{ikx} + e^{2ikx} \cdots e^{(N-1)ikx}) \\
\text{여기서 \text{파수(Wave number) \(k \)는 \(k = \omega / C \)를 \text{만족한다. \; \text{\(C \)는 \text{음속으로 \(1,500 \text{m/sec} \text{이다. 부\text{족한 경계조건들로부터 생기는 \text{파수는 탑공\text{판이 \text{놓여진 \text{위치에서 앞에서 유도한 물체경제조건들을 \text{적용하여 구한다.}}}}}}\)}
\end{align*}
\]

\[
\begin{align*}
\frac{\partial P_j}{\partial x} - ikG(P_{j-1} - P_j) \\
\text{
타공판의 특성을 나타내는 변수인 G는 Huang & Chang(1990)에 의하면
$$G = \frac{\rho b \omega}{\mu k}$$
로 나타낼 수 있으며, 타공판의 공극율과 국부형성(Local Shape)과 무결한 관련이 있다. 주어진 식에서 G와 ω는 공극율 계수(Porosity Coefficient)로 간주 차원을 갖는다. $b \to 0$는 부해방정 관을 의미하며, $b \to \infty$는 입사파에 전혀 영향을 주지 않는 가상의 관이 등장하는 것이다. 계산에서는 새로운 무차원 공극율 계수 b를 도입하였다. b는 아래와 같이 정의된다.

$$b = 2\pi G = \frac{2\pi \rho ab}{\mu k}$$

(16)

타공판의 공극율 ($= e$)과 공극율 계수 ($= b$)는 관계식은

$$b = 57.63 e^{-0.9717}$$

(17)

이로. 이 방정식은 2차원 조사수조에서 일련의 실험을 거쳐서 얻은 식이며, 이 방정식을 사용하면 실험에서 사용하지 않은 다른 타공판에 해당되는 공극율 계수 b를 구할 수 있기 때문에 어떤 종류의 타공판에 대하여 수치계산이 가능하다.

식(14)를 식(15)에 대입하여 정리하면 $2N \times 2N$ 대수방정식을 유도할 수 있다.

$$(1 + G_1)e^{i \delta R_i}R_i - G_1e^{-i \delta R_i}R_i = (1 - G_1)e^{i \delta R_i}T_1$$

$$G_1e^{-i \delta R_i}R_i + (1 - G_1)e^{i \delta R_i}R_i = - (1 + G_1)e^{i \delta R_i}T_1$$

$$G_1e^{i \delta R_i}R_i + (1 - G_1)e^{-i \delta R_i}R_i = 0$$

$$(1 + G_i)e^{i \delta R_{i-1}}R_{i-1} - G_i e^{-i \delta R_{i-1}}R_{i-1} + (G_i - 1)e^{i \delta R_{i-1}}T_{i-1} = 0$$

$$(1 + G_i)e^{i \delta R_{i-1}}R_{i-1} + (1 - G_i)e^{-i \delta R_{i-1}}R_{i-1} + G_i e^{i \delta R_{i-1}}T_{i-1} = 0$$

$$(1 + G_i)e^{i \delta R_{i-1}}R_{i-1} + (1 - G_i)e^{-i \delta R_{i-1}}R_{i-1} + G_i e^{i \delta R_{i-1}}T_{i-1} = 0$$

IV. 계산결과 및 고찰

Fig.3 Reflection coefficient of plane acoustic waves due to single upright punching plate

Fig.4 Reflection coefficient of plane acoustic waves due to double upright punching plates(1 kind)
Fig. 5 Reflection coefficient of plane acoustic waves due to double upright punching plates (2 kinds)

Fig. 3은 타공판 1장이 설치되었을 때의 계산결과이다. 이때 타공판의 공극을 계수 b는 5.0이다.
타공판과 벽면사이의 거리는 10cm이다. x축은 음파의 주파수 f (kHz)이며, y축은 반사율을 나타낸다. $f=3.7$kHz 까지는 주파수가 증가함에 따라 반사율이 감소하다가 그 이후부터는 반사율이 점차 증가하는 것을 보여주고 있다. Fig. 4는 공극을 같은 타공판을 2장 설치하였을 때 계산 결과를 보여주고 있다. 타공판의 간격은 5cm이며, 설치거리는 10cm이다. 타공판을 2장 설치했음에도 불구하고 반사율이 오히려 커짐을 볼 수 있다. Fig. 5는 타공판의 간격을 Fig. 3과 같이 10cm로 하여 2장을 설치한 경우이다. 전체 설치거치가 20cm일 때 반사율을 보여주고 있다. Fig. 4에 비하여 반사율이 줄어드는 것을 알 수 있다. 또한 계산 주파수 범위내에서는 대체로 일정한 반사율을 보여주고 있다.

Fig. 6 Reflection coefficient of plane acoustic waves due to double upright punching plates (2 kind)

Fig. 6은 공극율이 서로 다른 타공판 $(b = 5, 10)$ 2장을 설치하였을 때의 계산결과이다. 타공판의 간격은 10cm이며, 전체 설치거치는 20cm이다. 실선은 파의 진행방향에 따라 공극을 계수가 감소하도록 타공판을 설치한 경우이며 점선은 그 반대의 경우이다. 음파의 진행방향에 따라 공극을 계수가 감소하도록 타공판을 배치한 경우가 반사율이 높은 경우라 실은을 볼 수 있다. Fig. 7은 서로 다른 3장의 타공판 $(b = 20, 10, 5)$ 을 설치하였을 때의 결과들이다. 타공판의 간격은 10cm이며, 설치거치는 30cm이다. 실선은 공극을 계수가 감소하도록 타공판을 배치한 반사율의 결과이며 점선은 공극을 계수가 증가하도록 타공판을 배치하였을 때의 계산결과이다. Fig. 6과 마찬 가지로 파의 진행방향으로 공극율이 작은 타공판을 설치하는 것이 반사율을 감소시키는데 효과적이다.

Fig. 7 Reflection coefficient of plane acoustic waves due to triple upright punching plates (3 kinds)

Fig. 7은 타공판의 숫자가 증가하면 그에 비례하여 반사율을 감소하는 가로 빌딩을 그린다. 실선은 Fig. 6에서 살펴본 서로 다른 타공판을 공극을 계수가 감소하도록 설치한 경우이다. 점선은 3장의 타공판 사이사이에 각 타공판과 같은 타공판을 추가로 설치한 경우이다. 따라서 타공판의 간격은 5cm이며, 종류 타공판을 6장을 설치한 경우이다. 타공판의 숫자가 2배로 늘었지만 반사율은 오히려 나빠지는 것을 볼 수 있다.

V. 결론

이상의 계산결과로부터 다음과 같은 결론을 내릴 수 있었다.

1) 간단한 수학적 모델에 대하여 직립형 타공판에 의한 반사율을 계산하는 프로그램을 개발하였다. 계산 프로그램은 일의 계수의 타공판을 배열하여 때 반사율을 계산할 수 있다.
2) 타공판의 간격을 일정하게 유지하면서 타공판의 속자가 증가시키면 반사율은 증가한다. 그러나 주어진 설치거리에 안에 타공판을 증가시키면 반사율은 오히려 변어진다.

3) 좌의 진행방향으로 공극을 계수가 점차 감소하는 도록 판을 설치했을 때가 공극을 계수가 증가 하는도록 판을 설치했을 때 보다 우수한 소파성능을 보여주고 있다.

후 기
본 연구는 한국해양연구소에서 수행한 기관고유사업인 '음향과 가동해석기법을 이용한 수송조음과 시험시스템 개발'의 결과 중 일부임을 밝히는 바이다.

참고문헌