기업간 전자상거래에서의 Workflow 관리 시스템 활용방안 연구

백영우*, 신철원*, 현철철*, 윤정**
*충남대학교 컴퓨터과학과
e-mail : ywbaek@cs.cnu.ac.kr

A Study on Utilization Plan of Workflow in B2B

Young-Woo Baek*, Chul-Won Shin*, Hyun-Chul Han*, Cheong Youn**
*Dept. of Computer Science, Chungnam University

요 약

인터넷의 급증에 따라 전자상거래(Electronic Commerce)가 시간적, 공간적 제약을 극복한 새로운 경제활동의 지식, 정보기반시대의 새로운 패러다임으로 국가 경제, 사회의 변화를 주도하는 수단으로 부각되고 있다.

이러한 시대적 환경과 인터넷의 확산으로 전자상거래 시장규모도 이례 없이 증가하고 있다. 특히 전자상거래에 대비하는 대부분의 업체들이 내세우는 전략의 공통점은 B2C(Business to Customer) 보다는 B2B(Business to Business)에 중점을 두고 있다는 것이다. 기업간 전자상거래에 필수적인 요소로 부각되고 있는 워크플로우 관리 시스템이 서로 다른 업체들에 의해 제공된 워크플로우 엔진들의 상호운영성이 보장되지 않기 때문에 전자상거래의 제 기능을 발휘하지 못한다.

본 논문에서는 서로 다른 업체들에 의해 제공된 워크플로우 엔진들의 상호운영성을 위한 기본 방식에 대해 살펴보기로 한다. 또한 업무단 비즈니스 프로세스를 정의하기 위한 워크플로우 프로세스를 구현하는 구현 시 고려해야 할 사항들에 대해서 살펴보기로 한다.

1. 서론

1999년 전세계의 e-business로 인한 규모는 무려 1,400억 달러에 이르렀다고 하며, 2003년에는 10배 이상인 1조 8,000억 달러 경로 될 것으로 예측되고 있다. 하지만 실적 한 해 국내의 e-business 규모는 대략 3,000억 원 정도로 추정되는데, 이는 단 한 시점만큼이지만 기업 간의 정책의 장점일 수 없는 것이다. e-business의 가장 큰 장점은 인터넷이라는 단순한 포괄적이며 빈번화된 커뮤니케이션을 통하여 전세계 무역의 장벽을 초월한다는 것이다. 즉 e-business로 전환하지 않는다면 그 만큼 빠르게 변화하면서 급증하고 있는 새로운 경제 환경에서 기업의 존립 자체에 문제가 생길 수도 있다.[1]

e-business에 어떻게 대비하고 추진하여야 성공적으로 생존할 수 있을 것인가에 대해서는 많은 논문들이 있을 것이다. e-business에 대비하는 대부분의 업체들이 내세우는 전략의 공통점은 B2C(Business to Customer) 보다는 B2B(Business to Business)에 중점을 두고 있다는 것이다. 고려한 후 직접 물건을 판매하는 경우 유동성, 물류비용 등을 높아하자면 이는 창출을 어렵다는 판단이다. 즉, 기업 간의 경쟁과 거래가 이루어져서 시장에 출시를 공급해 부가가치를 창출하겠다는 것이다.[2]

기업간 전자상거래는 업무단 규모의 비즈니스 프로세스를 구성한다. 따라서 다양한 비즈니스 프로세스들은 수행하기 위한 업무 규칙을 정의하고, 주기적으로 이의 준수 여부를 점검하고, 특징 조건 발생 시 자동적으로 미리 정의된 다음 행위를 수행할 수 있도록 지정하기 위한 솔루션 역시 필요하게 된다. 이를 지원하는 워크플로우 관리 시스템은 정보 관리 시스템과 연동하여 업무호흡에 따라 필요한 사항에 정보를 제공할 뿐만 아니라, 업무 처리 상태나 전적도를 파악
하하여 업무 철차의 병목 현상과 개인의 생산성을 분석할 수 있다. 1993년 워크플로우 관리시스템에 관한 용어, 상호 환경성 등을 표준화하기 위해서 국제 표준화 기구인 WMC(Workflow Management Coalition)가 창립되었다. 현재까지 WMC는 시스템의 구조, 특성, 인터페이스를 정의하며 Workflow Reference Model 표준화 작업을 수행하고 있다. 본 논문에서는 기업간 전자상거래에 필수적인 요소로 부각되고 있는 워크플로우 관리 시스템에 대해 살펴보고, 서로 다른 벤더들에 의해 제작된 상이한 워크플로우 엔진들의 상호운영성을 위한 기본 명세, 상호운영 모델, 기업간 통합 비즈니스를 그레포적으로 정의할 수 있는 워크플로우 정의도구 구현시 고려사항에 대해 알아보도록 하겠다.

2. 워크플로우 관리 시스템

워크플로우 관리 시스템은 기업간 전자상거래에서 업무의 효율화와 자동화를 위해서 요구되고 있으며, 빠른 속도로 발전하고 있는 기술 중 하나이다. 워크플로우는 전반적인 비즈니스의 목표를 성취하기 위한 규칙의 집합을 정형으로서 워크플로우 참여자 사이에서 주고 받는 문서, 정보, 데이터의 전달을 자동화할 수 있다. WMC에서 제안하고 있는 워크플로우 참조 모델 (Workflow Reference Model)은 가장 보편화된 워크플로우 표준이다. Workflow Enactment System은 WMC 참조모델의 핵심부분으로서 워크플로우를 실행하는 워크플로우 엔진으로 구성된다. 그림에 따라 서로 다른 워크플로우 엔진을 이용할 수도 있다. WMC에서 제안하고 있는 워크플로우 시스템 구조를 살펴보면 Workflow Enactment System은 5 개의 인터페이스를 가지고 있는데 이는 다음 (그림 1)에 나타나 있으며, 이들의 표준화가 바로 WMC의 주요사업이다.

![그림 1 워크플로우 참조 모델](image)

이들 5개의 인터페이스들은 Workflow Enactment System에 접근할 수 있는 시스템들의 API(Application Program Interface)로서 다음과 같은 기능을 수행한다.

- 인터페이스 1: 워크플로우 정의도구와의 인터페이스
- 인터페이스 2: 워크플로우 클라이언트 애플리케이션과의 인터페이스
- 인터페이스 3: 기존에 있는 애플리케이션과의 인터페이스
- 인터페이스 4: 다른 Workflow Enactment System과의 인터페이스
- 인터페이스 5: 워크플로우의 실행 상황을 검사하고 관리하는 모니터링 및 관리(Monitoring & Administration) 도구와의 인터페이스

5개의 인터페이스 중, 인터페이스 4는 서로 다른 워크플로우 엔진들 사이의 상호운영성(interoperability)을 지원하기 위해서 요구되는 기능을 정의한다. 인터페이스 5는 모니터링 및 관리(Monitoring & Administration) 도구와의 인터페이스. 인터페이스 4를 만족하는 워크플로우 관리 시스템은 외부적으로 비즈니스를 하는 파트너인 다른 조직과의 비즈니스 통합을 가능하게 한다.

3. 워크플로우 상호운영성(Interoperability)

![그림 2 워크플로우 엔진 사이의 상호운영](image)

4.1 워크플로우 상호운영 모델
WMC에서 제시한 상호운영성 제도에 정의된 상호운영성의 기본적인 2개의 태입은 다음과 같다.

- 연쇄 프로세스(Chained processes)
 연쇄 프로세스 상호운영 모델은 Workflow engine A에서 실행되고 있는 프로세스 인스턴스가 Workflow
engine B의 서브 프로세스 인스턴스를 생성시켜 시작되게 한다. 단, Workflow engine B의 서브 프로세스 인스턴스가 시작되었면 Workflow engine A는 지금 현재 실행되고 있는 프로세스 인스턴스를 종료 또는 계속 진행시킬 수 있다. 즉, Workflow engine A는 Workflow engine B에서 새롭게 생성된 서브 프로세스 인스턴스에 전혀 관심이 없다.

(그림 3) 연쇄 프로세스[7]

◆ 중첩 프로세스(Nested sub-process)
중첩 프로세스 상호운영 모델은 Workflow engine A에서 실행되고 있는 프로세스 인스턴스가 Workflow engine B의 서브 프로세스 인스턴스를 생성시켜 시작되게 한다. 그러나 이때 프로세스 상호운영과는 달리, Workflow engine B에서 실행되고 있는 서브 프로세스 인스턴스가 완료될 때까지 Workflow engine A에서 실행되고 있던 프로세스 인스턴스는 기다리게 된다.

Workflow engine A에서 실행되는 프로세스 인스턴스는 Workflow engine B에서 종료된 서브 프로세스 인스턴스로부터 Application Data 혹은 Relevant Data를 받아서 프로세스 인스턴스를 계속 진행시킬 수 있다.

(그림 4) 중첩 프로세스[7]

지금 현재, 더욱 복잡한 상호운영 모델은 WfMC에서 작업중이다.

4.2 인터페이스 4를 상호운영에 적용시키는 방법
현재, WfMC에서는 정의한 인터페이스 4를 인터넷상의 웹프로토콜 사용자 사이의 상호운영에 적용하기 위한 구체적인 방법은 인터넷 전자우편 방식인 MIME를 이용하는 방법과 표준화된 XML DTD(Attributes Type Definition)를 이용하여 교환할 데이터를 XML로 전송하는 방법이 제안되어 있다.

4.2.1 MIME를 이용한 구현[8]
인터넷 전자우편 방식인 MIME(Multipurpose Internet Mail Extension)을 이용한 데이터 교환은 두 개의 웹프로토콜 간의 통신 메시지를 인터넷 전자우편을 통해 전송하는 방식이다. 웹프로토콜이 수행하는 메시지 인터페이스 4에 해당하는 내용은 전자우편의 텍스트 인터페이스로 사양하는 것을 기본으로 하여, 기본적인 웹프로토콜 간의 동신 메시지를 구성한다.

하지만, 전자메일은 신뢰할 수 없는 통신 관행이기 때문에 예기치 않은 문제가 발생할 경우 해결해야 하는 추가의 노력이 필요하다. MIME 결합점에서는 기존 웹프로토콜 간의 운영에 의한 오류 뿐 아니라 예외 상황에 대한 해결책이 없이 전자우편을 프로토타입으로 이용함으로써 발생하는 오류와 예외 상황들도 해결하기 위한 내용들도 포함하고 있다. 이러한 오류 해결은 구현 방면에 귀속되어 또 다른 상호운영의 문제를 야기한다. 또한 구현의 어려움을 가중시켜 반다른의 구현의 욕구를 저해하는 요소이기도 하여 표준 프로토콜로서의 적용에 문제점을 내포하고 있다. 다음 (그림 5)은 MIME 메시지 형식을 보여준다.

(그림 5) MIME 메시지

4.2.2 Wf-XML을 이용한 구현[9]
Wf-XML은 WfMC의 상호운영 추상 메시지(인터페이스 4)의 데이터 전송 요구사항을 지원하기 위하여 더가장된 XML 언어에 대한 링크이다. 이 언어는 WfMC의 웹프로토콜 중소 모델에 정의된 인터페이스 4의 지원하기 위해 제안한 기능 및 요소를 구성하기 위한 기반으로 사용한다.
Wf-XML은 상호운영 추상 메시지에 정의된 상호운영의 기본적인 2개의 모델인 연쇄 프로세스와 중첩 서브 프로세스의 상호운영을 제공하기 위한 XML 언어에 대한 테마이다. 구현에 있어서는 데이터 교환을 개방적이고 표준 기반의 모습을 유지하기 위해서 XML(extensible Markup Language)을 사용한다. 즉, 웹프로토콜 데이터 교환에 사용되는 XML 태그 집합을 통일하기 위해 표준화된 DTD(Document Type Definition)를 정의하고 사용하는 방식이다.
Wf-XML에 메시지에 제시하는 전체 메시지 구조의 DTD 형식은 다음과 같다.

```
<!ELEMENT WfMessage (WfTransport?, WfMessageHeader, WfMessageBody)>
<!ATTLIST WfMessage Version CDATA #REQUIRED>

<?xml version="1.0"?>
<WfMessage Version="1.0">
  <WfTransport/>
  <WfMessageHeader/>
  <WfMessageBody/>
</WfMessage>
```

4. B2B 전자상거래에서의 웹프로토콜 관리 시스템 구현 시 고려사항
기업 내 비즈니스 프로세스를 전자적으로 처리하기
위래지는 기본적으로 (그림 6)과 같은 워크플로우 구조를 가지야 한다.

(그림 6) 워크플로우의 구조

워크플로우 관리 시스템을 통해 기업 간의 모든 비즈니스 프로세스를 전자적으로 처리하기 위해서는 다음과 같은 사항을 고려해야 한다.

기업 간의 통합된 비즈니스를 정의하기 위해서는 그들의 파트너인 다른 기업의 외부 프로세스와 연결이 되어야 한다. 따라서 그래픽적으로 프로세스를 정의할 수 있는 워크플로우 정의도구의 변경이 요구된다. (그림 7)와 (그림 8)은 병원과 약국의 서로 다른 프로세스이다.

(그림 7) 병원 프로세스

(그림 8) 약국 프로세스

위의 그림처럼 병원과 약국, 기업 간 통합된 비즈니스를 정의하기 위해서는 워크플로우 정의도구가 상호운영 생산청에 입력된 상호운영의 기본적인 2계의 모델인 워크플로우와 중부 서브 프로세스를 제공해야 한다. 이를 가능하게 하기 위해서는 새로운 Activity가 필요하다. 외부 프로세스와 연결을 위한 OutActivity 외부 서브 프로세스가 종료를 한 다음, 부모 프로세스를 복구하기 위한 InActivity가 필요하다. 다음 (그림 9)는 워크플로우 정의도구의 클래스 다이어그램이다.

(그림 9) 워크플로우 정의도구 클래스 다이어그램

5. 결론

전자상거래의 궁극적인 목표는 컴퓨터와 인터넷을 이용하여 기업 내외 기업 간의 모든 비즈니스 프로세스를 전자적으로 처리하는 것으로 볼 수 있다. 본 논문에서는 "B2B 전자상거래에서의 워크플로우 관리 시스템 활용 방안"에 관한 방안을 제시하였다.

워크플로우 관리 시스템은 단순히 기업 내 비즈니스 프로세스를 처리하는 단계뿐 아니라 기업 간 통합된 비즈니스 프로세스 전 기간을 자동화할 수 있다.

본 논문에서는 다른 벤더들의 상호간 워크플로우 관리 시스템들간의 통신 가능하게 하고자, 이들의 상호운영상에 살피고 B2B 전자상거래에서 WfMC의 상호운영 추상 명세(인터넷 4)의 데이터 전송 요구사항을 지원하기 위하여 디자인된 XML 언어에 대한 명세인 Wf.XML에 대해서도 살펴보았다.

항후 워크플로우 관리 시스템이 보다 활발히 B2B 전자상거래에서 활용되기 위해서는 보안 정책(Security Policy) 및 예외사항 및 복구(recovery) 프로토콜에 대한 연구가 진행되어야 할 것이다.

참고문헌

[8] WFMC, "Workflow Management Coalition Workflow Standard – Interoperability Internet e-mail MIME Binding"