동적 대역폭 할당을 지원하는
위성 망 분석

배태웅, 이정규 *
한양대학교 전자공학과, *한양대학교 전자컴퓨터공학부
e-mail: tupae@cse.hanyang.ac.kr

Analysis of Satellite Network supporting
Dynamic Bandwidth Allocation

Tae-Ung Pae, Jong-Kyu Lee *
Dept of C.S.E., Han-Yang University
*Dept. of E.E.C.S., Han-Yang Universityer

요약
본 논문은 위성 망에서 데이터 Traffic를 다루는 System을 제안하고, 성능을 분석한다. Traffic Source는 동일 릭키 버켓(DLB : Dual Leaky Bucket)에 의해 일정하게 조정된 Traffic를 사용하며, 이러한 Traffic를 이용하여 제안한 시스템의 성능을 수학적으로 분석하고, 이를 시뮬레이션을 통해 검증한다. 제안한 시스템은 각 연결의 동적 변동 요구를 동적으로 허락하기 때문에 그 연결 자체의 초기화 설정 및 연결을 해제하는 다른 별도의 알고리즘이 필요 없어 기존의 회선 교환 시스템보다 효율적이다. 또한, 서비스 질을 결정적으로 보장함으로써 유연성 및 신뢰성을 높인다. 이러한 분석 결과는 앞으로 회선 교환 System에서 Protocol의 설계 및 구현 시 유용하게 사용될 수 있을 것으로 생각된다.

I. 소개
기존의 회선 교환 망은 응용 서비스만을 지원하는 위성 망이 대부분이다. 이런 망은 호 실시간성이 너무 길다는 단점으로 인해 패킷 교환의 필요성이 대두되어 지고 있는 실정이다. 패킷 교환 망은 양의 유연성과 효율성에 있어 회선 교환 망보다 더 좋은 성능을 가진다. 따라서, 앞으로의 회선 교환 위성 망에서 패킷 교환 망을 제공해야 할 것이다. 하지만, 아무리 패킷 교환 망이 좋다고 해도 위성 망의 특정인 전송 지연 때문에 완전 패킷 교환 위성 망을 만드기에 다소 무리가 있다. 그리고 여기에 따르는 비용과 System의 복잡성의 문제가 있을 것이 다. 따라서 기존에 제공되고 있는 회선 교환 위성 망을 기반으로 해서 패킷 교환 전송모드의 도입이 필요하다. 본 논문은 제시하는 방법은 기존적으로 호 설정이 이루어질 때, 그 연결에서 할당된 대역폭을 동적으로 변경하고자 하였고, 이러한 대역폭의 변경은 또 다른 호 설정이나 호 제거와 같은 별도의 알고리즘이 없어도 가능하다. 또한 단순히 교환 역할만을 지원하던 위성 망에서 벌어지는 양과 같은 별도의 알고리즘이 없어도 가능하게 되는 온보드 처리(OBP : On-Board Processing) 방법을 적용하였다. 본 논문에서 제안한 System 내에서 교환되는 가장 작은 단위를 위성 셀이라고 하고, 각 위성 셀의 크기 계 53 bytes이며, 기존적인 셀에 대해 16 Nbps박 Rate를 제공한다. 제안한 System에서의 Traffic의 제어 방법은 기존의 비동기 전송모드 (ATM : Asynchronous Transfer Mode)이나 자원 예약 프로토콜(RSVP : Resource ReSerVation Protocol)에서 사용하는 방법과 유사하다. 호 설정은 마스터 제어 기록(MCS : Master Control Station)에 의해서 처리되며, 각 단말기와 MCS와 신호를 주고 받게 된다. 하나의 연결이 설정되었을 때, 대역폭 요청 신호(IBRS : In-Band Request Signal)를 사용하여 그 연결의 대역폭 변경을 허락하고, 각 사용자는 필요에 따라 연결의 용량을 동적으로 감소 또는 증가에 대한 요청을 할 수 있다. IBRS를 위성내에서 Traffic에 대한 자원을 관리하는 Traffic 관리자(TRM : Traffic Resource Management)에게 보낼며, 이는 TRM은 IBRS에 대해 positive 또는 negative reply를 할 수가 있다. 물론, negative reply에 대해선 대역폭의 요청이 이루어지지 않으며, positive reply에 대해서는 용량의 동적인 변경을 허락한다[1]. 본 논문의 구성은 다음과에서 본 논문에서 제안한 System의 구조를 소개하고 자원 관리 방법을 제안하며, 비교의목적으로 제시한 비교 System과 제안
한 System의 구조를 비교 및 분석하고, 다음절에서 서비스 질을 결정적으로 보장하기 위한 수식을 전개하며, 이런 수식들을 분석하고 평가를 통한 결과는 그 다음절에서 다룬다. 마지막으로 결론과 참고 문헌으로 본 논문을 구성한다.

2. System 구조

본 논문에서 제안한 System에서 System의 정차를 단순화하기 위하여 다음의 두 가지의 가정이 필요하다.첫 번째 가정은 모든 Traffic은 높은 우선순위(HP : High Priority) Traffic과 낮은 우선순위(LP : Low Priority) Traffic으로 나누며, HP Traffic이 공유될 용량을 먼저 이용하며, 만약 더 이상의 이용하지 못하였을 경우에 대해 LP Traffic이 이용한다.두 번째 가정은 제안한 System으로 들려가는 모든 Traffic은 두업 리키 베이스(DLB : Deaky Bucket)라는 방법에 의해 Traffic이 일정화된다. 또한, DBL의 출력 포스미스(Out Process)는 오른-왼 프로(On-Off)의 상태로 두 가지로 표현된다.

기존 위성통신 탑재 장치의 수동적인 중계기능 이외에 복조/재변조, 부호/복호화 및 오류정지, 중계기 및 병간의 상호 연결/절제 등의 새로운 기능이 추가되어 능동적인 중계기에 하여 통신 품질의 향상 및 통신 링크 전송 효율 개선, 전송 용량 증대 등의 장점을 갖는 등의 OBW은 가진 위치를 사용한다. 따라서 기존의 교환 역할만 하던 위성보다 훨씬 성능이 좋겠다. 그리고 기존에 대한 제어를 위성에서 해결하야지 지상의 MCS와의 신호를 통하여 동적으로 대역폭의 변경을 가능하게 하였다. 기존적으로는 설정이 이루어진 상태에서 연결에 대해 할당된 대역폭을 동적으로 변경하고자 할 때, MCS와 단말기 혹은 인터워킹단위(IWU : InterWorking Unit) 사이에서 정보 신호를 주고받으며, 또한 용량 할당에 대하여 제어하는 위성과 지상 쌍방의 단말에서의 Buffer 할당과 용량 할당 제어를 이루기 위해 정보 신호를 주고받는다.

3. 결정적 서비스 질

주어진 위성 단말의 연결에 대해 MCS에서의 정차는 주어진 대역폭 \(C \)을 할당될 수 있다. 용량의 수신은 위성 단말이 대역폭의 변경을 요청했을 때, 모든 프레임에서 이어날 수 있고, 이러한 변경은 OBW 위치에 대해 Traffic TRM의 요청을 수신할 때만 효율적이다. 주어진 연결의 HP Traffic(LP Traffic)에 대해 동적으로 용량을 할당할 때 사용하는 알고리즘은 본 논문에서 중요할 요소이다. \(a(t) \)는 HP Traffic에 의해 사용된 용량이며, LP Buffer의 합수로써 주어지며, \(N \)는 \(N \)는 LP Traffic에 제공된다. \(a(t) \)가 HP Buffer의 비-값 오류가 아닌 경우, HP Buffer의 정보요소가 증가할 때, HP Traffic은 더 많은 용량을 필요로 한다. HP Buffer의 합수, \(a(t) \)는 \(a(t) \)의 다른 복제에 대한 규정을 고려하고 이러한 규정에 대한 가장 단순한 것을 Buffer 할당과 용량 할당간의 관계로 나타낸다. 따라서 다음의 그림을 그릴 수 있다.

그림 2. HP Buffer 할당과 HP 용량 할당

다음의 수식을 전개하기 위하여 간단한 표기법을 정의한다.
- \(B \)는 HP Buffer 크기
- \(a(t) \)는 시간 \(t \)에 HP Buffer 점유 합수
- \(C \)는 주어진 연결에 대해 할당된 총 용량
- \(N \)는 위성 단말내의 주어진 연결에 의해 제공되는 HP Source들의 총 수
- \(N \)는 주어진 연결이 포함된 HP Traffic에 의해 지원되는 시간 \(t \)에 사용된 용량 합수
- \(AT \)는 위성 링크의 업무 시간에 관련되어 주로 용량 할당의 효과를 증가시키기 위해 제한된 시간
- \(\rho \)는 주어진 연결의 총 이용 효율 요소

DLB에 의하여 \(T \)가 \(\frac{2\pi}{P_n - R} \)로 정해진다.
\[
\frac{d\varphi(t)}{dt} = N_P - c(o(t - AT), 0 \leq t \leq T
\]
(1)
(은 \(AB\)를 결정하기 위한 미분 방정식이다.) \(o(t) = N_P, t - \int^t_0 c(o(t - AT))\)dt \(\) \(\)
(2)
비교 System은 다음의 식으로 나타낼 수 있다.
\[
o_o(t) = N_P, T - CT = (N_P - C)T
\]
(3)
본 논문에 제안한 System은 비교 System에 관계된 추가적인 Buffer(\(AB\))를 필요로 한다. 따라서 추가적인 \(AB\)의 크기는 다음과 같이 나타낼 수 있다.
\[
AB = o(t) - o_o(T) = CT - \int^T_0 c(o(t - AT))\)dt \(\) \(\)
(4)와 (13)을 이용해서 본 논문에서 제시하고자 하는 \(AB\)를 구하면 다음과 같다.
\[
AB = (C - C_o)\left(\frac{B_1}{N_P - C_o} + AT\right)
\]
(14)
\(AB\)가 \(AB_1\) 일 때, (6), (7) 그리고 (14)에 의해서 다음 식들로 나타낼 수 있다. 그리고, 주어진 식에서 알려지지 않은 인자를 \(c\), \(b\), \(N\), \(AB\)의 값을 결정한다.
\[
AB_1 = (C - C_o)\left\{\frac{B_1}{N_P - C_o} + AT\right\}
\]
\(\)
\[
C = \frac{B - AB_1}{b} = N
\]
(15)
(16)
HP 최대 Source들의 수(\(N\))는 \([\frac{C}{P}, \frac{C}{R}]\) 사이에 존재하고, \(AB_1\)가 증가함에 따라 \(N\)는 감소한다. Buffer의 입력값인 \(B_1\)이 증가하고 \(C_o\)가 감소할 때, \(AB_1\)는 증가한다.
\(AB\)가 \(AB_0\)일 때 Buffer 크기가 \(B_{tot} = B + AB_0\)이며, 이 경우에 HP Source들의 수, \(N\)로 할당할 수 있고 수식은 (15)와 동일하다.
\[
B_{tot} = B + AB_0
\]
\[
= B + (C - C_o)\left(\frac{B_1}{N_P - C_o} + AT\right)
\]
(17)
(18)
보통 경우 Source의 총 이용률은 Source들의 특별한 종류에 의해 System의 성능을 평가하는 데 반해, 본 논문에서 성능 분석 측정을 Best Area와 Worst Area를 결정함으로서 구한다.
OO 상태에 의해서 어떤 맵의 성능을 평가한 결과는 보다 가까운 시점에 볼 수 있지만, 그 결과 중에서 최적의 조건에 의한 결과는 가능한 Worst의 성능에 대해 주어지게 된다. 즉, Worst의 맵 성능을 제시하기 때문에 앞에서 언급한 두 가지의 경계 영역 중에서 Worst Area에 해당한다. 두 번째 조건에 의한 결과는 가능한 Best의 성능에 대해 주어지는 것으로 Best Area에 해당된다.
평론과, 두 가지의 조건을 결정하는 가장 기본이 되는 개념은 앞에서 언급한 OO 상태의 두 가지 조건이다. 이러한 경우 두 가지의 경계 영역에 대해 부피가 가능한 온라인 환경에 사용될 \(B_1\)와 \(C_o\)를 이용해 \(o_o\)를 평가한다. Best Area에 관련된 처리율은 \(\rho_B\)로 표현하고, Worst Area에 관련된 처리율은 \(\rho_w\)로 표현한다. System의 인자들의 값을 다음과 같이 주어진다.
\[
P_1 = \frac{32}{2}, 000/(48 \times 8) = 80.33\text{cells/s}
\]
\[
R_1 = 32.197\text{cells/s}, \quad B_{tot} = 100\text{cells}, \quad AT = 0.25\text{s}
\]
\[
C = 2, 048, 000/(53 \times 8) = 4, 830, 180\text{cells/s}
\]
먼저, 두 가지의 경우 중에서 Best Area에 대해 \(\rho_B\)
의 값을 알아본다[4].

\[
\rho_w = \begin{cases}
\frac{C - C_m + N_S}{C} & \text{for } C_m < NS, \\
\frac{C}{1} & \text{for } C_m \leq NS,
\end{cases}
\] \hspace{1cm} (17)

경계영역을 결정하는 방법 두 가지 경우 중에 Worst Area를 결정하는 경우만 먼저, Worst Area를 정하기 위해서 Buffer에서 생길 수 있는 지연에 대해 다음과 같이 고려할 수 있다. 이런 지연의 \(D \)는 모든 HP Buffer 내의 마지막 셀에 의해 제공된 지연이며 이는 두 가지로 구성된다. Buffer가 비어 있는 동안 \(C_m \)에 마지막 \(B_i - C_i t \)의 지연은 가지는 경우와 HP Buffer가 비어있는 동안 \(C_m \)에 마지막 \(B_i - C_i t \)의 지연은 가지는 경우이다.

\[
D = \frac{B_i - B_f}{C} + \Delta T + \frac{B_i - C_i t}{C_m}
\] \hspace{1cm} (18)

마지막으로, 만약 \(\Delta T > \frac{B_i}{C} \) 면, 최대 지연은 비교 System과 같다. (19)를 이용해서 Worst Area에서 \(\rho_w \)의 값을 알아본다.

\[
\rho_w = \begin{cases}
1 - \frac{S_i}{P_i} & \text{for } \Delta T > B_i \hspace{1cm} (19a) \\
1 - \frac{S_i}{P_i} & \text{for } \Delta T \leq B_i
\end{cases}
\]

\[\frac{S_i}{P_i} t = T \left(\frac{P_i}{S_i} - 1 \right) - \frac{B_i - B_f}{C} - \Delta T \] 이며, (19)에서 \(D \)가 주어진다.

그림 3. \(N = 72.7 \)인 그래프

\[\frac{C_m}{C} \] 비율에 의해서, HP Source의 수는 본 System (N) 내에 할당되고, HP Source의 크기는 (B)의 값은 System 내에서 손실 현상을 없을 필요가 없다. 비교 System은 72.7 Source (N = 72.7)를 지원할 수 있고, \(C \)의 크기는 2416 cell (B = 2416)과 동일하다. 분석 결과는 최적 작업점은 \(N_r \)과 같은 \(C_m \) 값을 선택할 때이며, 이러한 선택은 모든 사용 효율 요소와 협력된 HP Source의 최대 수를 제공한다. \[\frac{C_m}{C} \] 에 해당되는 최적 작업 점은 0.48 이다.

5. 결론
본 논문에서는 단순 교환 역할만을 하던 위성 망에 OBP 기능을 추가시키켜 교환뿐만 아니라 동적으로 연결을 제어할 수 있는 System에 대해서 분석하였다. 그리고, Traffic에 대해 Priority를 부여하여 HP Traffic에 대해서만 처리하던 System보다 본 논문에서 제안한 System이 더 좋은 성능을 가짐을 증명하였다.

본 논문에서 다운 위성 망에서의 성능 분석은 이전의 다른 논문에서도 시뮬레이션을 위주로 분석한 것에 반해 수식을 통하여 수학적인 분석 및 평가하고 시뮬레이션을 통하여 검증함으로써 더욱 효과적으로 분석할 수 있는 방법론을 제시했다는 점에서 의미가 있다. 이러한 분석은 인자들에 대한 위성 망의 성능의 비교 및 평가에 의미가 있으며, 효율적인 방법으로 성능을 분석할 수 있는 수학적 모델을 제시했다는 점에서 의미가 있다. 이러한 점에서 본 논문에서 얻은 결과는 위성 망의 설계 및 구현에 사용되어 질 수 있으며, 향후 위성 망의 연구하고 설계 및 구현에 유용하게 사용되어 질 수 있을 것으로 생각된다.

참고문헌