A Design of Component Repository for Component Trading

Tae-Woong Kim, Jeung-Hyun Kim, Kyung-Min Kim, Tae-Hae Kim, Tae-Gong Kim, Hang-Mook Choi
Department of Computer Science, Inje University
E-mail: {twkim, jhkim, kmkim, thkim, ktg, hmchoi}@cs.inje.ac.kr

요 약
최근 집어 소프트웨어의 대형화, 독립화가 요구되면서 소프트웨어 개발방법의 변화가 대두되고 있으며, 그 해결책의 하나로 컴포넌트 소프트웨어가 제시되고 있다. 경험이 많은 개발자에 의해 개발된 컴포넌트는 소프트웨어 재사용에 있어, 어떤 많은 것에서 사용 중이므로 안정성 및 신뢰성이 인정된다. 이러한 컴포넌트의 개발자와 소비자를 연결하기 위해 웰 환경에서 컴포넌트의 명제 및 컴포넌트 자체를 쉽게 등록 및 검색이 가능하도록 설계하였다. 하나의 컴포넌트의 명세에 따르는 각기 다른 종류의 벌티비아 컴포넌트를 등록, 검색할 수 있으며 다양한 분류법을 지원하는 컴포넌트 저장소이다.

1. 서론
소프트웨어 컴포넌트란 하나 이상의 기능을 갖는 독립적인 소프트웨어이며, 조립을 통해 응용프로그램을 작성할 수 있는 부분 형태의 소프트웨어를 말한다[1]. 응용프로그램 개발 시 작성되어 있는 소프트웨어들의 조합을 통해 응용프로그램을 작성할 수 있다면 개발자의 노고와 비용의 절감을 가져와 높은 효율을 가져 오는 수단이다[2].
즉, 경험이 많은 프로그래머 개발자에게 의해 만들어진 컴포넌트들을 재사용함으로써 신뢰성, 안정성 및 유지보수성이 매우 뛰어난 소프트웨어를 개발할 수 있는 것이다.
소프트웨어 컴포넌트는 족 설계 가능한 마이너리 코드만을 말하는 것이 아니라 소프트웨어 개발 시 반생하는 산출물·문서·관리상태, 문서, 도움말문서 등을 재사용 가능한 형태로 만들어 놓은 모든 것들을 포함한다. 본 논문은 컴포넌트의 특성을 높은 명세를 다양한 분류법에 의해 특정한 형식에 준하도록 등록하고 실제 컴포넌트는 실행 가능한 마이너리 컴포넌트를 등록 및 검색 가능하도록 설계한다.
컴포넌트는 재사용을 위해 다른 소프트웨어나 컴포넌트와 연결할 수 있는 방법을 정의하고 있는 인터페이스(Interface)를 가진다[1]. 응용등록이 수행 가능한 기능을 컴포넌트 외부에서 사용가능하도록 하는 것이다.
소프트웨어 컴포넌트는 다른 것들과 명확히 구별되어야 하며, 다른 컴포넌트나 어플리케이션에 포함된 후에 그 존재를 확인할 수 있어야 하고, 어플리케이션 사용에 영향을 주지 않고 다른 버전의 컴포넌트나, 동일한 서비스나 기능을 제공하는 다른 컴포넌트로 교체할 수 있어야 한다[3].
또한 문서로 정확히 기록되어 재사용을 위해서 인터페이스를 통해 제공되는 서비스에 대해 정확한 기록을 남겨야 하는데, 이를 통해 서비스를 다루는 방식뿐 아니라 어떠한 서비스가 제공되는데 대해서도
이해할 수 있도록 해야 한다.

협 환경에서 멀티미디어 서비스 시스템을 구현할 경우 멀티미디어 정보 특성상 대부분의 데이터처리와 영상처리 요소 메시지 같은 기능의 서비스라 할 것이라도 인자와 인자 타임에 따라 다른 처리를 해주어야 한다. 컴퓨터로 이러한 부분을 경험하게 해야한다면 개발시간 및 비용등을 상당 부분 줄일 수 있다.

많은 개발시간과, 개발비용, 유지보수가 필요하다고 재 사용이 어려운 기존의 소프트웨어 개발방법의 대안 중 하나로 컴퓨터가 제시되었고, 본 논문에서는 이로운 컴퓨터의 트레이닝을 위해 컴퓨터로 복잡한 구조를 상세히 기술할 명세서 정리하고 정의한 명세서를 특정 한 형식과 자언어를 토대로 쉽게 작성할 수 있도록, 명세에 따르는 실행 가능한 마이크로 코드 형태 컴퓨터로 복잡한 명세서를 짧은 인스턴스 형태로 가치게 함으로써 같은 기능을 가진 다양한 컴퓨터를 사용자가 검색할 수 있는 컴퓨터 저장소[4]를 설계하였다.

2. 컴퓨터 저장소

개발자가 개발한 소프트웨어 컴퓨터로 사용자가 쉽게 검색하고 사용 가능하도록 컴퓨터로 저장한곳이 컴퓨터 저장소이다.

2.1 컴퓨터 저장소의 구조

그림 1에서와 같이 컴퓨터 저장소는 Export, Import, PS(Process Server), DBM(DB Manager), Monitor, DB로 이루어져 있다.

각각의 구성요소의 기능은 다음과 같다.

- Export
 개발자가 개발한 소프트웨어 컴퓨터 및 컴퓨터 명세를 저장소에 등록할 수 있도록 하는 사용자 인터페이스이다. 컴퓨터 등록 시에는 먼저 해당 명세를 선택한 후 그에 따른 컴퓨터의 명확한 정보 및 사용자 설명서를 등록한다. 웹 환경에서 사용 가능하도록 ActiveX를 구현한다.

- Import
 사용자가 원하는 컴퓨터 및 명세를 검색하고 사용가능하도록 하는 사용자 인터페이스이다. 단순 키워드 검색, 분류(category)별[6] 검색, 패킷(facet)검색을 지원하며, ActiveX로 구현한다. 검색 결과는 컴퓨터 명세서를 보여주고 그 명세에 따른 컴퓨터를 선택할 수 있도록 한다.

- PS(Process Server)
 Export와 Import의 요구를 처리하여 주는 서버기관을 하며, 서비스 요청을 XML 문서 형태로 만들어 DBM에 전달하고, 그 결과를 XML 문서를 파생하여 사용자에게 되돌려준다.

- FS는 Export와 Import의 요구를 처리해주는 외부 인터페이스와 사용자 요구를 XML 문서로 만들어, 외부에 내부 인터페이스, 좌표된 XML 문서를 DBM에 전달하고 결과를 받는 외부 인터페이스로 구성되어 있다.

- DBM(DataBase Manager)
 PS로부터 받은 XML 문서를 파생하여 DB에 워셔(Quey)를 보내고 결과를 전달받아 다시 XML 문서로 만들어서 PS로 전달한다.

- DBM은 PS로부터의 요구로 받아들이는 외부 인터페이스와 XML로 만들고, 파생하는 내부 인터페이스 와 DB에 투입할 보낸 외부 인터페이스로 이루어지며 있다.

- Monitor
 FS와 DBM의 활성화 상태를 모니터링 하는 일을 하며, 컴퓨터 명세 문서를 관리자모드로 동작 수 동작 가능하도록 한다. 명세 문서를 여러 종류로 동작 가능하도록 저장소를 구현한다.

위의 구조라면 DB의 종류가 터라짐에 따라 DBM
을 경제해야 한다는 단점이 있으나, PS와 DBM 사이의 데이터 전송방법을 XML로 처리함으로써 XML DTD(Document Type Definition)의 변형으로 문제를 잘 해결할 필요가 있으며, PS와 DBM의 기능이 달라지거나, 구현언어에 관계없이 사용 가능한다는 장점이 있다.

즉, PS와 DBM은 소프트웨어 컴퓨터이며, 이 환경의 컴퓨터로 여러 DB이든 XML을 이용하여 DB에 등록 점검 가능하도록 되어 있다.

2.2 컴퓨터 명세

컴퓨터 시장은 컴퓨터로 등록하고 검색하여 사용하는 시스템이다. 컴퓨터로 설정하는 명세가 명확하고 정해져 있으나, 전파를 Import가 컴퓨터로 검색하여 사용하는데 아주 troublesome만 아니라 원하지 않는 컴퓨터를 검색하여 사용하는 경우도 발생하게 된다.

현재 컴퓨터는 컴퓨터의 기능을 사용하기 위한 인터페이스에 대한 정형적인 명세 방법으로 IDL(Interface Definition Language)을 사용하여 구체적인 부분만 명세하는 설정이다. 이는 Import에게 구문적인 정형성을 보장하기 때문에 컴퓨터의 의의적 인 부분도 명세가 되어져야 할만한 컴퓨터 사용이 이루어질 수 있다. 일반적으로 컴퓨터의 의의적인 충전은 자연어를 이용하여 기술하고 있다[7].

본 연구에서는 컴퓨터 인터페이스에 대한 명세는 기존의 방법과 같은 CORBA IDL을 따르기 하지만, 관리적인 부분은 자연어와 OCL(Object Constraint Language)를 병합하여 사용한다.

명세등록은 크게 스키마 분류, 스키마 정보 인터페이스 정보, 관련 스키마로 나누어진다.

- 스키마 분류
 관리자에 의해 이미 등록되어 있는 스키마 분류에 따라 등록하고자 하는 명세의 해당 분류를 선택한 다. 미리 등록되어 있는 분류만 선택한다면 각 분류별 설명이 간단히 제공된다.

- 스키마 정보
 유일한 명세 명칭, 간단한 기능설명(자원명)과 명세의 인터페이스 각각에 대한 관계(Required, Provide)를 정의한다. 정해진 항목이 아님 등록자가 직접 항 목을 설정하여 좀 더 복잡하게 명세를 등록할 수 있도록 사용자가 정의 할 목록을 제공한다.

- 인터페이스 정보
 명세의 각 인터페이스에 대한 정보로 등록한다. 인터페이스 명칭, 간단한 기능설명(자원명)을 등록 할 수 있다. 인터페이스 각각의 메소드, 속성들을 등록 할 수 있으며, 그림 2에서의 값 이란 등록정보들은 자동으로 CORBA IDL 형식으로 표현되어 가독성을 높여준다.

- 관련 스키마
 컴퓨터는 다른 컴퓨터와 연결되어 사용되어 지는 경우가 대부분이며, 명세도 다른 명세와 관계를 가지며, 관련 스키마에서 관리 있는 명세를 명령으로 검색하여 관계를 선별해 봅니다. 이때 정보는 관련된 명세의 인터페이스 정보를 보여주며 어떤 인터페이스를 통해 관계되어지는지 보여준다.

그림 2 명세의 인터페이스 정보 등록화면

2.3 동록 시나리오

등록과정은 컴퓨터 명세에 따른 컴퓨터의 등록이 기본이며, 기존의 명세에 따른 컴퓨터라면 명세专卖店 선택 후 컴퓨터 관계정보를 등록할 것이고, 새로운 명세에 따른 컴퓨터 등록은 다음과 같은 시나리오를 따른다.

- 명세의 상속 이무르면 먼저 관계, 상속인 경우는 부모 명세를 선택하여 그 정보를 기반으로 추가정보를 등록한다.
- 새로운 명세의 경우, 정의되어 있는 분류법에 따라 명세 분류를 먼저 선택한다.
- 기본적인 명세 정보를 해당 명세의 명칭과 기능 설명을 국가 정보 필요시 사용자 정의를 추가 기술한다.
- 이 명세의 구체적인 인터페이스 정보를 정의한다. 여기에서 인터페이스에 대한 메소드, 속성을 기술한다. 이 정보들은 CORBA의 IDL[8] 형식을 따
르는 미리보기 형식으로 제공되며, IDL 형식을 도는 등록자의 기본적인 정보의 등록으로 자동 생성되어 알아보기 쉽게 제공된다.
* 인터페이스들의 Required/Provide 관계를 등록한다.
 * 관련 명세에 관한 정보는 관련 명세 검색 후 Required 인터페이스를 선택함으로써 이루어진다.
 * 이 모든 정보들은 등록자가 등록상태를 한 눈에 보며 기술할 수 있도록 원목에 트러치식으로 제공된다.

2.4 검색 시나리오
단순검색은 컴퓨터의 명세를 등록할 때 발생한 명세/컴포넌트의 명칭과 기능, 설명에 따른 위치 검색이며, 복잡검색은 컴퓨터의 명칭과 기능, 설명을 포함하여 사용자가 컴퓨터의 특징을보다 더 상세히 기술할 목적으로 사용자 정의 항목을 이용하여 항목에 따른 검색이다.

복잡검색은 다양한 형태의 검색에 따라 목록에 맞는 컴퓨터를 찾아가는 검색이다.

여기서는 불필요 검색의 경우, 인터페이스 정보, 해당 컴퓨터 세부정보까지 손자적으로 자세히 제공함으로써 사용자가 원하는 정보를 최대한 정확하고 신속하게 검색할 수 있도록 한다.

검색 후 결과는 사용자 설계파일과 컴퓨터 소프트웨어가 제공된다.

3. 결론 및 향후 연구과정
소프트웨어의 대형화, 통합화 추세에 따라 개발비용 및 유지보수비용의 증가 문제를 해결하고자 컴퓨터 소프트웨어를 이용하는 추세이다. 이에 맞추어 본 논문에서는 컴퓨터 개발자와 사용자를 연결하는 협력에서의 컴퓨터 사용자를 제안한다.

 컴퓨터 사용자의 특성은 컴퓨터의 명세에 초점을 맞추었다는 것이다. 명세 자체의 등록, 검색 및 명세에 따른 인스턴스의 컴퓨터의 등록, 검색이 가능하다. 이와같이 다양한 형태의 검색/검색 방법은 사용자의 요구부분 사항이 명세로 등록이 가능하며, 하나의 명세에 따르는 것은 기능을 가진 다양한 형태의 컴퓨터를 쉽게 검색할 수 있다는 점을 가진다. 또한 다양한 형태의 사용자가 가진 기능으로 차후 어떠한 형태의 소프트웨어가 생성되더라도 지원 가능하도록 설계되었다.

 컴퓨터 사용자의 사용자는 각각의 하나의 컴퓨터가 되어있고, 실제 사용상 유지보수성이 하락하도록 설계되어 있으며, PS와 DB의 한 품을 이용하면서 기기 DB에 쉽게 접근할 수 있다.

현재 구현단계에 있는 본 시스템은 등록시스템과 관련되는 구성요소인 Import, PS, DBM 및 데이터베이스 스키마의 구현이 끝난 상태이다. 차 후 검색 시나리오에 해당하는 Import의 구현이 필요하다.

향후 연구과정은 컴퓨터 사용자가 직접 원하는 컴퓨터를 선택하게 되면 서버측 실행 컴퓨터의 경우 자동적으로 실행 가능하도록 환경 설정을 해주는 deployment 기능의 추가이다.

[참고문헌]