Pr³⁺이 도핑된 광섬유중복기의 최적화 및 과도현상에 관한 연구
이재영, 지영훈, 염관용*, 이영우
목원대학교
* 레이콤 시스템

A Study on the Optimization and the Transient Phenomena of the Pr³⁺-doped Fiber Amplifier
Jae-myung Lee, Ji-myung Hoon, Jin-yong Yeom*, Young-woo Lee
Mokwon University
* Lacom System
E-mail : ywlee@mokwon.ac.kr

요 약
본 논문에서는 1.3μm 대역에서 중복특성을 갖는 PDFA의 과도응답 특성을 이론적으로 해석하였다. 수치모델은 밀도반전의 형성과정, 여기와, 산호파와 중복기류를 따라 변화하는 산호파를 포함하고 광섬유 중복기의 길이에 따른 각 에너지준위의 밀도, 여기와, 이들의 해석과 시간의 변화에 따른 각 에너지준위의 밀도변화와 이득을 해석하였다. 이러한 수치해석의 결과는 광섬유중복기의 이득 변화와 복구시간을 예측할 수 있게 해주고, 이득의 변화와 복구시간이 둘 필스의 중복에 미치는 영향을 예측할 수 있게 한다. 시뮬레이션의 결과, 여기와의 파장 1.017μm, 파워 0.5W이고 광섬유중복기의 Pr 이온의 도핑농도가 1000ppm일 경우 광섬유중복기의 길이 약 5m에서 이득의 변화가 이루어졌으며 30dB의 이득을 얻었다. 또한 장소의 이온밀도는 약 250μs의 시간이 지난후에 변화될 수 있었다.

ABSTRACT
The transient response in PDFA(Praseodymium-Doped Fiber Amplifier) is theoretically investigated. The PDFA has the spectral gain band in 1.3μm. The transient model includes the transient buildup of the population inversion, the pump power, and the signal power and their transient variation along the fiber amplifier. The numerical analysis of transient model can predict the gain saturation, the variation of pump power and the gain as a function of the fiber length. It also shows the gain saturation and recovery effects depending on the pumping rate lead to distortion and saturation in the amplification of optical pulse. The results of numerical analysis, for the case of the Pr ion concentration of 1000ppm and the pump power of 0.5W the gain saturation is obtained 30dB at the length of 5m and the saturation time of upper level is 250μs.

1. 서 론
1991년 Ohishi 등에 의해서 처음으로 Praseodymium(Pr³⁺)-doped fiber amplifier(PDFA)가 제안되었으며, 1.5μm 대역에서 사용되는 광섬유 중복기 개발에 새로운 발전이 제공되었다[1]. 거의 동시에 PDFA를 사용한 광중복 설정이 보고되었으며, 30dB 이상의 높은 신호 이득과 17.8dBm의 출력파워의 보고로 PDFA의 가능성이 인정되었다. 현재 세계적으로 초고속 광통신을 위한 광섬유 중복기에서는 극초단 필스의 전파에 관한 연구 등이 진행되고 있다[2,3]. 특히 PDFA는 수십 nm의 넓은 이득 대역폭을 가지고 때문에, 1.3μm 대역에서 극초단 필스 중복을 위한 가장 유방한 후보이다.
본 논문에서는 1.3μm 대역에서 중복특성을 갖는 PDFA의 일반적 특성과 과도응답을 이론적으로
포드의 이론적 및 수치적 해석을 위해서는 다음과 같은 방정식이 필요하다.

\[
dN/dt = W_{31}N_1 - (W_{36} + W_{34} + W_{32} + W_{31}) N_1 + \frac{1}{\tau_3 + \gamma}N_3 + B_{34}N_4/\tau_4 + B_{32}N_5/\tau_5
\]

\[
dN_2/dt = (W_{36} + CN_2/2) N_2 - N_1/\tau_1
\]

\[
dN_4/dt = W_{32}N_2 - N_4/\tau_3
\]

여기서 \(C\)는 \(G_4\)준위에서 \(G_2\)준위로의 cooperative upconversion 계수이고, \(W_{32}\)는 \(j\) 준위 사이의 전이율이다. \(W_{36}, W_{34}, W_{32}\)와 \(W_{31}\)는 \(P_{36}, P_{34}, P_{32}\)와 \(P_{31}\)의 합으로 각각 주어진다. 여기서 \(P_{36}\)는 광원이 \(i\) 준위 사이의 유도전을 반영한다. \(\gamma\)는 \(i\) 준위의 \(A\) 준위의 \(B\) 준위로의 파괴 계수이다. \(A\)는 \(h\) 준위를, \(h\)는 광중첩수, \(\nu\)는 \(P\) 준위와 \(A\) 준위의 수용점수이며, \(P\)는 \(A\) 준위파괴계수. \(h\) 준위의 \(N_1, N_3, N_5\)는 각각 주어진 유도전을 반영한다. \(N_1, N_3, N_5\)는 다음과 같은 식으로 주어진다.

\[
N_1 = N_{10} - (1 + r_3W_{36} + CN_2/2) + r_5W_{35}N_{35}\]

\[
N_3 = -\beta + (\beta^2 - 4\gamma \alpha)^{1/2}/2a
\]

\[
N_5 = r_4W_{34} + CN_5/2
\]

\[
N_5 = r_5W_{35}N_5
\]

\[
\alpha = C(r_4 + (2 - B_3)/W_{34})/2
\]

\[
\beta = 1 + W_{35}r_4 + W_{35}r_5 + (W_{35} + W_{34} + W_{32})
\]

\[
\gamma = N_1
\]

여기서 \(B_3, B_5\)는 \(j\) 준위와 \(5\) 준위에서 \(3\) 준위로 발산되는 브레직율이며, 각각 \(9\%\)와 \(2\%\)이다. 식(1-3)으로부터 계산된 각 준위의 유도전으로부터 이득계수는 다음과 같은 식으로 주어진다.

\[
N_{ti} = N_{t0} - (1 + r_{ti}W_{ti} + CN_{ti}/2) + r_{ti5}W_{ti5}N_{ti5}\]

그림 1. \(Pr^{3+}\)의 에너지 준위 도표

Fig. 1. Simplified energy level diagram of \(Pr^{3+}\)

ZBLAN fluoride glass에서 \(Pr^{3+}\)의 형광 스펙트럼대에 대한 해석을 위해서는 다양한 수식들과 매�typings을 적용함으로써 ZBLAN fluoride host glass에서의 \(Pr^{3+}\)의 형광 스펙트럼대를 구할 수 있게 되었다. 이전의 ZBLAN fluoride host glass에서의 \(Pr^{3+}\) 형광 스펙트럼대의 수법 및 해석과 본 연구의 결과를 비교하여 설명하였다. 본 연구에서는 \(Pr^{3+}\)의 형광 스펙트럼대의 수법 및 해석과 본 연구의 결과를 비교하여 설명하였다. 본 연구에서는 \(Pr^{3+}\)의 형광 스펙트럼대의 수법 및 해석과 본 연구의 결과를 비교하여 설명하였다.
\[
\sigma_{N_0} = \frac{\sigma_s N_1 P \sigma_{13}/A h \nu_b}{1/\tau_1 + P_0(\sigma_{23} + \sigma_{34})/a h \nu_s}
\]

(11)

표 1. 수치해석에 사용된 Pr의 광 파라미터 Table 1. Optical parameter of Pr used in numerical analysis

\(\sigma_{13} \)	\(4.24 \times 10^{-12} \text{cm}^{-1} \text{b} \)	110\(\mu\text{m} \)	C	\(2 \times 10^{13} \text{b} \)
\(\sigma_{23} \)	\(3.73 \times 10^{-12} \text{cm}^{-1} \text{b} \)	350\(\mu\text{m} \)	C	\(3.2 \times 10^{10} \text{b} \)
\(\sigma_{33} \)	\(1.2 \times 10^{-14} \text{cm}^{-1} \text{b} \)	58\(\mu\text{m} \)	C	9\%
\(\sigma_{34} \)	\(1.0 \times 10^{-14} \text{cm}^{-1} \text{b} \)	58\(\mu\text{m} \)	C	9\%
\(\sigma_{25} \)	\(0.6 \times 10^{-14} \text{cm}^{-1} \text{b} \)	58\(\mu\text{m} \)	C	2\%

여기에, \(\sigma_s = \sigma_{13} = \sigma_{23}\)이다.
수치 해석을 위해 쓰여진 각 파라미터들의 값은 여러 논문에서 발표되었고 표 1에 나타내었다[4,9-11].

III. PDFA의 기본특성

각 에너지 준위의 밀도는 2장에서 논의된 기본적인 확장식(1-3)을 사용하여 얻을 수 있다.
또한 3장 확장식(1-3)의 종류에 의해 얻어진 각 에너지 준위의 밀도 \(N_i\)를 다음 식에 적용하여 간에 따른 여기 파워의 변화를 구할 수 있다[6].

\[
P_s(x + \Delta x) = P_s(x) - (\sigma_{13}N_1p - \sigma_{34}p_3)\Delta x
\]

여기에 \(\beta_p\)는 overlap factor이고, \(\sigma_s\)는 background attenuation이다. Pr 이온의 도장능도가 1000ppm인 PDFA에서 여기파워가 1.017\(\mu\text{m}\)인 경우 \(p_3 = 0.078 b / \text{m}^3\) 이다. 여기에서는 ASE의 효과는 고려하지 않았으며 여기 방향은 신호와 같은 방향으로 여기하는 전방향 방향이다.

계산을 위해 먼저 광합성을 일정 갈리의 세그먼트로 나누었으며, 각 세그먼트들은 각각의 여기 파워와 각 준위의 밀도를 가지게 된다. 초기의 여기 파워가 나누어진 광합성의 첫 번째 세그먼트를 통해 때 식(12)에 의해 여기 파워의 변화와 각 준위의 밀도가 계산된 후 다음 세그먼트로 이동한다. 다음 세그먼트로 전파된 여기 파워의 다시 파워의 변화량과 각 준위의 밀도를 계산하게 된다. 이렇게 한 세그먼트적으로 다음과 광합성이 마지막 세그먼트까지 여기 파워의 변화와 변화된 여기 파워에 의한 각 준위의 밀도를 계산할 수가 있다.

그림 2는 식(12)에 의해 계산한 광합성 갈리에 따른 여기 파워의 변화를 보여준다. 광합성 중독기의 갈리에 따른 여기 파워의 변화를 계산하기 위해 초기의 파워가 0.5W, 파장 1.017\(\mu\text{m}\)로 하였고, 광합성중독기의 Pr 이온의 도장능도는 1000ppm, 갈이 20m인 광합성중독기에 대하여 시뮬레이션 하였다.

그림 2. 광합성 갈리에 따른 여기 파워의 변화 Fig. 2. Pump power versus doped fiber length

그림에서 보듯이 여기 파워는 약 5m까지 파워가 광합성중독기에 거의 흡수되면서 이후로는 광합성중독기에 영향을 주지 못하는 것을 볼 수 있다. 이러한 시뮬레이션에 의해 각 여기 파워와 파워, 광합성중독기에 도달 된 이온의 농도에 대해 광합성중독기의 설계에 있어서 적당한 갭을 예측할 수 있을 것이다.

그림 3. 갈이에 따른 \(N_3\)의 밀도반전 Fig. 3. \(N_3\) population versus doped fiber length

그림 3은 초기의 파워가 0.5W, 파장 1.017\(\mu\text{m}\)이고, 광합성중독기의 Pr 이온의 도장능도는 1000ppm, 갈이 20m인 광합성중독기의 등이 있는 각 여기파워의 변화가 밀도반전에 주는 영향을 나타내고 있다. 광합성중독기의 갈이가 각각 0m, 0.2m, 2m일 때의 상존위의 밀도를 보여주고 있다. 갈이에 따라서 여기파워가 감소하므로 영향받는 상존위의 밀도와도 감소하는 것을 볼 수 있다.

그림 4는 여기 파워에 따른 상존위의 밀도 변화를 보여준다. 각각 0.2W, 0.3W, 0.4W, 0.5W에 대해서 \(Z = 0\) 일때의 상존위 밀도 변화이다. 약
250μs안에 상준위 밀도가 꼭대되는 것을 볼 수 있다.

그림 4. 여기 파워에 따른 상준위 밀도 변화
Fig. 4. Upper level population density versus pump power

이상과 같이 언어진 PDFA의 기본 특성을 바탕으로 과도적인 현상에 대한 이론에서 결과로 발표한 예정이다.

IV. 결 론

본 논문에서는 1.3μm 대역에서 증폭성을 갖는 PDFA의 일반적 특성과 과도응답을 이론학적으로 해석하였다. 모델은 밀도변화의 형성과정, 여기파워, 신호파워와 증폭기를 따라 변화하는 신호 파워를 포함한다. 모델을 이용하여 광섬유 증폭기의 전이에 따른 각 에너지준위의 밀도, 여기파워, 에너지 해석과 시간의 변화에 따른 각 에너지준위 밀도변화와 에너지를 해석하였다. 이러한 수치 해석의 결과는 광섬유증폭기의 이득 변화와 복구 시간을 예측할 수 있게 해주고, 이득의 변화와 복구시간이 광 필스의 증폭에 미치는 영향을 예측할 수 있었다.

시뮬레이션 결과, 여기파워의 파장 1.017μm, 파워 0.5W이고 광섬유증폭기의 Pпр 이온의 도평균도가 1000ppm일 때, 여기파워의 파워는 광섬유증폭기 를 지나며 약 5m 가지 파워가 급격히 흡수되면서 이후로는 신호파괴 증폭에 거의 영향을 주지 못하였으며, 4km에 따라 여기파워가 감소 하므로 영향받는 상준위의 환원밀도도 감소하는 것을 알 수 있다. 또한 여기파워의 파워 0.5W 일 때 광섬유 증폭기를 지나는 신호가 갖는 이득은 약 5m에서 30dB의 이득으로 포화되는 것을 알 수 있었다.

본 논문에서 언어진 시뮬레이션의 결과는 광섬유증폭기의 강인한 입력에 여기파워에 따른 증폭이득의 변화, 시간의 변화에 따른 각 에너지준위의 밀도를 예상할 수 있게 해 주므로써 최적의 PDFA 시스템 구축을 가능하게 할 것이다.

참고문헌