무선 홈넷워킹 시스템의 성능 비교

0김동호*, 우병훈**, 강희조***
*동신대학교 전기전자공학과
**전주공업대학 정보통신과

Performance Comparison of Wireless Home Networking Systems

"Dong-Ho Kim"*, Byung-Hoon Woo***, Heau-Jo Kang***
*Dept. of Electrical & Electronic Eng., Dongshin Univ.
**Dept. of Information & Communication Eng., Jeonju Technical College.

요 약

본 논문에서는 무선 홈네트워킹 시스템으로 대두되고 있는 Wireless LAN(802.11b), HomeRF, Bluetooth 성능을 객관이 고려되지 않는 경우의 신내 무선 환경에서 시스템의 변조 방식을 비교 본격화하였다. 무선 홈네트워킹 시스템의 채널 수 및 주파수 대역은 동일하며 신내 무선 환경을 라이선스 안 필요할 경우 고려하였을 경우, 직관과 네트워크 전력비(0)가 6(dB)이며 라이선스 필요한 경우에서 오음 10^-1을 기준으로 비교하여 보면, DQPSK 방식이 FSK와 GFSK 보다 4(dB), DQPSK는 11(dB) 그리고 2FSK 보다 28(dB) 정도 우수하였다. 또한 GFSK와 4FSK가 0.4(dB) 차이를 두고 일정하게 분포함을 알 수 있었다.

I. 서론

현재 일반가정의 PC, 주변기기, 홈폰, 가전제품 등에 PC 또는 다른 장비를 통해 공유할 수 있는 홈네트워킹 시스템은 유무선 상에서 많은 정보를 빠르게 전송하는 시대에 더욱 능력하게 연구가 진행되고 있다. 이러한 홈네트워킹 시스템은 모든 종류의 가전제품을 하나로 묶는 것으로 일반가정의 제품들을 단일 프로토콜로 제어한다는 개념에서 출발한다[1].

홈네트워킹 시스템이 사용되는 신내 무선 환경은 큰 경로 손실뿐만 아니라 심각한 대충경로 패 이달로 인해 시스템 구성이 어렵고 신내의 패 이달은 데이터 송신과 수신에 영향을 미치게 된다. 이에 따라 연구자들은 다양한 손실을 최소화하는 2 비트 간격에서는 크게 변동되지 않는다. 또한 신내 전용의 기차에 기기로부터 발생되는 임의적, 선호성의 인공음영 영향도 받을 수 있다[2,3].

본 논문에서는 무선 홈네트워킹 시스템에 대한 신내의 무선 환경에 대해 살펴보고 신내 무선 채널 환경에서 각각의 홈네트워킹 시스템 성능 해석을 통해 시스템의 성능을 비교 분석하였다.

II. 무선 홈네트워킹 기술

2.1 WLAN(Wireless LAN)
IEEE802.11은 1990년 WLAN 사절들이 모여 결성한 그룹을 중심으로 이루어진 1997년 표준안을 발표하였으며 현재 ISM(Industrial, Scientific, and Medical) 밴드의 2.4GHz를 사용하여
2Mbps까지 전송할 수 있는 WLAN 물리 계층과 MAC(Medium Access Control) 계층을 구성하고 있다. MAC 계층으로 CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance) 방식으로 작동한다. DSSS(Direct Sequence Spread Spectrum) 방식의 Multi-level GFSK, FHSS(Frequency Hopping Spread Spectrum) 방식의 다이내믹(Multi-level GFSK)을 사용한다. 802.11b는 2.4GHz 대역의 기본 IEEE802.11 규격 WLAN의 일부를 변경하여 전송 속도를 10Mbps 규모로 고속화한 것으로 HomeRF는 이에 비해 보다 고속의 데이터 속도를 제공한다는 장점을 가지고 있다.

2.2 HomeRF

HomeRF는 1997년 초반에 가정내의 PC와 가전 제품을 무선으로 연결하기 위하여 기존의 WLAN 벤더와 PC 및 가전제품 제조업체들이 창설하였다. 기존의 IEEE802.11은 사무실 내의 PC를 무선으로 연결하기 위하여 제안되었으므로 가정에서 사용하기는 적합하지 않다. 1999년 1월 HomeRF에서 SWAP(Shared Wireless Access Protocol) V1.0 규격을 제안하였다. SWAP 규격의 물리 계층은 IEEE802.11 규격을 따라 2.4GHz의 ISM 주파수대를 사용하고 500Mbs/초를 갖는 802.11의 FHSS 방식을 통해 데이터 전송용으로 1Mbps(2FSK), 2Mbps(4FSK)를 사용한다. 사양을 초과할 경우 also 대역폭을 동일하게 지원하기 위하여 하나의 SWAP 프레임을 동기, 비동기 전송용으로 분할하고 동기 데이터 전송 슬롯은 TDMA 방식의 DECT(Digital Enganced Cordless Telecommunications) 코드를 사용하고 비동기 전송 슬롯은 DFMAC(Distributed Foundation Wireless MAC)을 사용한다. HomeRF는 가정 내에서의 사용을 목표로 하고 있기 때문에 Wireless LAN에 비해 저거의 제품이 요구된다.

2.3 Bluetooth

Bluetooth SIG(Special Interest Group)는 초소형화 및 저소자기, 목표로 하고 1998년 2월 Ericsson, Nokia, IBM, Toshiba, Intel 등의 기업에 의해 결성되었다. Bluetooth는 Cordless 전화기, 이동 전화기, 모바일, 헤드셋, PDA, 컴퓨터, 프린터, 프로젝터 등에서 사용하는 전화선, 케이블 또는 모듈에 있어 10[m] 이내의 거리 내에서 무선 시동을 개발하고 있다. 현재의 규격 Bluetooth V1.0은 HomeRF와 유사하게 2.4GHz 대역 ISM 무선 주파수에서 보통 1[MW] 출력, 1[MHz] 빠르게 79 채널을 초당 1600주로 전송하는 FHSS 방식을 통해 1Mbps의 빠른 속도의 송수신을 지원한다. 이 10[Mbps] 헤드셋 전송용도를 갖는 표준은 완벽한 전송 조건에 대한 연구가 진행되어 있다. 전송 지연률은 GFSK이며 duplex 통신을 위하여 TDD(Time Division Duplex) 방식을 사용하는 무선 데이터 헤드셋으로 일반적인 데이터 헤드셋이 아니라 음성신호에 대해서도 디지털 변조하여 전송할 수 있다. Bluetooth의 역할로는 adhoc 네트워킹의 picomt를 사용하며 데이터 전송이 각자 동기 데이터 전송 채널과 3개의 동기 데이터 전송 채널로 구성된다. 최근 Bluetooth는 휴대폰 내에 장착되어 무선 인터넷 접속을 할 수 있는 새로운 응용 분야를 열게 되었으며 생활, 관계 등에 HomeRF와 달리 조금은 라이센스 형태로 널리 사용되게 되었다.

III. 실내 환경에서 무선 홈네트워킹 시스템의 성능

3.1 실내 무선 환경

본 논문에서는 실내 무선 환경으로 라이선스(Rician) 방식 환경을 고려한다. 라이선스 방식은 실내 환경을 고려하여 어떤 사항에 따라 빠르게 수신되는 신호의 손실이 감소시키기 위하여, 라이선스 전파 등으로서 비트 시바데이터 및 간섭 신호(CNR), CNR가 적절한수단으로는 다음과 같이 나타내준다.

\(P(x) = \frac{(K+1)}{\gamma_0} \exp\left(-K - \frac{\gamma}{\gamma_0}\right) \)

\(\gamma = \frac{\lambda}{L(\lambda+1)} \)

\(\gamma_0 = \frac{\gamma}{L(\lambda+1)} \)

\(\lambda : \) 손실, CNR, \(\gamma : \) 평균 CNR

\(K : \) 적절한 방사선 적합성과 전력비

\(I_0 : \) 0차 변형 페널함수

3.2 가우스 잡음에 의한 모델링

가우스 잡음에 의한 모델링에서, 무선 홈네트워킹 시스템에 영향을 미치는 모델링은 모두 모델링에 적용되어 실내의 E\(_y /\ N_0 \)의 수치로부터 다음 식과 같이 표시된다.

\(P_{dskf} = 1/2\ exp(-\gamma) \)

\(P_{dskf} = 1/2\ exp(-\gamma/2) \)

\(P_{dskf} = 1/3\ exp(-\gamma/2) \)

\(\gamma \) : 가우스 잡음(Blue)의 수신기의 가우스형 필터의 정규화된 데이터 접속이 \(B_0T_0 \)가 0.5인 경우이다.

3.3 가우스 잡음에 의한 모델링

가우스 잡음에 의한 모델링에서, 무선 홈네트워킹 시스템에서 사용하는 모델링은 다음과 같이 표시된다.

\(P_{dskf} = 1/2\ exp(-\gamma) \)

\(\gamma \) : 가우스 잡음(Blue)의 수신기의 가우스형 필터의 정규화된 데이터 접속이 \(B_0T_0 \)가 0.5인 경우이다.

3.4 가우스 잡음에 의한 모델링

가우스 잡음에 의한 모델링에서, 무선 홈네트워킹 시스템에서 사용하는 모델링은 다음과 같이 표시된다.
탄 변조 방식의 확률밀도함수는 가우시안 잡음에
yclopedia에서의 음의 (2) ~ (6)에서 라이시안 페이지의 확
괄밀도함수 (1)를 임의 적분을 취하여 구할 수 있다.

\[P_n = \int_{-\infty}^{\infty} P_n \cdot p(y) \, dy \] (7)

이를 \(P_n \)는 무선 홍메트릭 시스템 오류시
\(p(y) \)는 라이시안 페이지 확률밀도함수

IV. 계산 결과 및 해석

간섭이 존재하지 않는 실내 공간의 라이시안 제공 방식으로 가정하여 시스템을 고려한 오류
식을 비트에너지 대 집중전력 스펙트럼 밀도비 (\(E_s / N_0 \)) 없이 간결하게 반사파와 정확도 (\(K \))
\(M \) 번으로 하여 비트 오류 성능을 구하였다.

그림 1은 변조 방식을 MDPSK로 할 경우 \(M \)과

\(K \)에 의한 비트 오류 성능 그래프이다. MDPSK
방식은 \(M=2 \)일 경우 오류 10\(^{-3}\)를 기준으로 하여 비교하면 \(K=6 \)이 \(K=2 \)일 경우보다 4.4[dB] 정도
오류 성능이 좋았고, \(M=4 \)일 경우 오류 10\(^{-3}\)를 기준으로 비교할 때 오류 성능은 6.2[dB] 정도 증
가하였다. 또한 DPSK 방식의 DQPSK 방식보다
11[dB] 정도 성능이 우수함을 알 수 있었다. 그림 2는
2PSK를 방식할 때 비트 오류 성능 그래프이다. MPSK
방식은 \(K \)와 \(M \)이 증가함에 따라 계산됨이 알 수 있는데, \(M=2 \)일 경우 오
류 10\(^{-3}\)를 기준으로 비교하면 \(K=6 \)이 \(K=2 \)일

\[M=4 \]일 경우 오류 10\(^{-3}\)을 기준으

로 보면 5[dB] 정도 좋았으며 4PSK가 2PSK보다
5[dB] 이상 오류 성능이 우수하였다. 그림 3은 그

\[L \]와 동일한 조건에서 GFSK를 사용한 경

\(M=2 \)의 경우 11[dB]보다 성능이 약 6[dB]

중이 우수하게 나타났다. 그림 4는 그림 1, 3을 통한 비교 본론과 \(K \)에 의한 \(M=2 \)일 경우

\(M \)은 홍메트릭 시스템에 사용되는 변조방식의
오류 성능을 나타내고 있는데, \(E_s / N_0 \) 성능은 상

\[\text{V. 결론} \]

본 논문에서는 무선 홍메트릭 기술의 표준
화 동향을 살펴보고 실내 무선 홍메트릭이 라이시
안 평판 확장인 경우, 변조 방식만을 고려한 홍
메트릭 시스템 성능을 비교 본론과하였다. 이론적
결과의 해석을 통해 무선 홍메트릭 시스템은
적절한 상태 반사파와 정확도 (\(K \))의 값이 결정으
로 오류 성능이 개선되며 알 수 있었고, 무선
시스템은 시험기간 내외 반상거리가 500m 이내,
\(M \)에 사용이 되고 있으며 HomeRF와 Bluetooth 시스
템은 보다 가정작은 근거리 (50m 이내)에 사용
될 수 있을 것으로 보인다.

참고문헌

그림 1. M-ary와 직점과 대 반사파 전력비 (K) 변화에 따른 WLAN 시스템의 오율 특성

그림 2. M-ary와 직점과 대 반사파 전력비 (K) 변화에 따른 HomeRF 시스템의 오율특성

그림 3. 직점과 대 반사파 전력비 (K)의 변화에 따른 Bluetooth 시스템의 오율특성

그림 4. 직점과 대 반사파 전력비 (K)가 6dB일 경우 런데트위징 시스템의 오율 성능 비교