2D 웨이블릿변환을 이용한 그래이 의료영상이미지의 
의사결리향상에 관한 연구

김영빈*, 허창우*, 류영린*
*목원대학교 전자정보통신공학부

A Study on Pseudocolor Enhancement of Medical Images with 2D Wavelet Transform
Young-bin Kim*, Chang-wu Hur*, Kwang-ryol Ryu*
Mokwon University
Email: ryol@mokwon.ac.kr

요 약
의료영상 이미지에서 이상유무 등 진단능력을 향상시키기 위해 2D 웨이블릿 변환을 이용하여 그래이 이미지를 의사결리로 향상하기 위한 연구이다. 웨이블릿 패널스케일는 변환된 영상데이터의 불확 정을 줄이기 위해 차수가 높은 다수비와 패널변환 함수를 사용하여 패널함수를 구성하였고, 적 정과 성분과 고주파 성분, 대역통과 성분으로 각각 분리하여 R, G, B 이미지의 성분으로 매핑하여 의사결리 이미지로 향상하였다. 의사결리로 향상된 이미지는 그래이 이미지에 비해 결합 유무를 빠르게 구분할 수 있어 선호한 전단이 가능하고, 웨이블릿 변환을 이용함으로써 기존의 주파수변환 기법에 비하여 변환과정을 간소화 할 수 있다.

서 론
최근 디지털영상의 이용이 향상된 다양한 영상 처리에 대한 연구가 진행 중인데 그 중에서도 가장 홍무로 분야가 이미지 향상에 관련된 분야에 있다. 이미지 향상은 아직은 이미지 디스플레이 혹은 분석을 위한 특정 이미지의 강조시, 이를 통해 향상된 이미지에서 관찰자가 필요한 정보를 보다 빠르게 얻을 수 있게 된다. 그러나 수많은 이미지 데이터의 흐트라지 그래이 이미지인 경우에 분석가가 구분할 수 있는 능력에는 한계가 있다. 윈도우로는 단지 20-30 그래이 단계를 구분할 수 있는데 반해 새롭게의에 있어서는 수 천가지 이상을 분별할 수 있는 것과 같이 클러스터를 갖는 영상 이미지에서 분별할 수 있는 능력이 향상된다. 즉, 흐트라지의 이미지를 표현하여 인간의 판단을 높일 수 있다. 이와 같이 판독자인 사람이 이미지 내에서 대상은 감지하는 능력을 향상하기 위해 그래이 이미지를 흐트라지 이미지로 나타낸 의사결리(Pseudocolor, False color)가 있다.

[1-3][5,8].
그래이 이미지를 흐트라지 이미지로 변환하는 방법에는 회색의 범주변화에 특별히 흐트라지를 이용하는 방법이 있다. 그래이 농도에 이르는 점이 있다. 주파수 부분을 이용한 방법은 그래이 이미지를 FFT 처리하여 주파수 영역으 로 변환을 하고, 변환된 주파수 데이터에서 이미지의 그래이 농도 변화에 대한 특성을 고려하여, 대역통과 자동변환을 거쳐 흐트라지 이미지를 표현할 수 있는 RGB의 3영상으로 복원한다. 분리 된 영상데이터는 다시 역변환하여 변환을 거쳐 흐트라지 이미지로 변환을 한다.[4][12] 이 기법은 앞서 설정한 기법에 비해 보다 많은 용량을 제공하지만 FFT 변환, 역 FFT 변환, 필터처리 등 복잡한 과정을 간소화 하였다.

 웨이블릿 변환은 저주파 영역과 고주파 영역에 대해 각기 다른 원도우에서 사용하여 시간 분해 능과 주파수 분해능을 향상시킬 수 있다. 웨이블릿 변환에 의해 향상된 영상은 서로 다른 주파수
특징을 갖고 서로 간에 어느 정도 이상관계를 갖는다. 따라서 시간과 주파수에 대한 개념적인 신포를 포함할 수 있어 미량할 과정을 가지는 영상 신호를 해석하는 데 유용하고 이하의 변화량 영역의 시간특성과 비중이 다중 해상도로 표현이 가능하다[10][11][13][14]. 본 논문의 전 자유로 이어지면서 환자의 이상유무 등을 선속히 진단하기 위해 촬영한 이의미지를 의사결정의 방 법에 따라 변화하는 과정에서 웨이블릿 펄프를 이용한 변화를 제안한다.

II. 웨이블릿과 의사결정

1. 웨이블릿 변환

웨이블릿을 이용한 의사결정의 변화과정은 그레 이의 입력 영상 (Huv)에 대해 2D 이산웨이블릿 변환(DWT)을 취하면 웨이블릿 변환된 영상 정보는 저주파 성분의 근사와 오차, 수평, 수직 정보를 갖는 고주파 성분의 4개 영역으로 분리된다. 웨이블릿 변환 시에는 두 방법을 사용하는데 저주파 웨이블릿 첫 번째의 HPF와 고주파 웨이블릿 LPP를 각각 적용하여 저주파 성분과 고주파 성분의 영상데이터로 분리된다.

그림 1. 웨이블릿 변환

고주파성과 저주파 성분으로 분리된 데이터는 제수종 필터를 사용한 웨이블릿 이차변환 (IDWT)을 거쳐 입력 영상과 동일한 크기의 영상 이미지로 다시 복원된다. 웨이블릿 변환은 고주파 성분과 저주파 성분의 영상 데이터에 적용할 수 있으며, 웨이블릿 변환은 고주파 성분의 저주파 성분을 사용하여 저주파 데이터에 따라 변환된 영상은 저주파와 웨이블릿 변환 영상의 상관계계를 생성하여, 재조정하여 Green 이미지로 복원한다. 이 과정으로 얻은 영상을 볼리병영상으로 재구성하여 의사결정의 부족을 구성하게 된다. 웨이블릿 변환을 이용한 의사결정의 과정은 그림 1에 나타났다.

2. 의사결정과정

광도를 거쳐 분리된 Red, Green, Blue의 3개에
이미지 데이터는 웨이블릿 변환과 역변환을 거쳐
동안 표현하기에 불面白い한 영상을 포함하
고 있고 영상 데이터의 정보가 불필요하게 초우
치 것이다. 이러한 부분을 제거하거나 디스플레이
계기에 적합한 정보를 갖도록 마이크로에 분포되
어 있는 데이터는 제거하고, 히스토그램 평활화
과정을 거친다. 고주파 영역의 데이터는 최대값과
최소값의 차이가 크지 않고 영상의 히스토그램이
반복적으로 검정되어 있어 영상의 경계부의 구분
이 실지 않아 히스토그램 평활화 과정을 거쳐
루프의 경계를 갖는 영상으로 평활한다.

III. 실험 및 결과

본 논문에서는 NMR와 CT 스캔을 이용하여
환자의 저주파를 표현한 256x256x16의 이미지
를 대상으로 체외에서의 변환을 냈다. 그림 2
는 NMR를 이용하여 체외에서의 변환의 크기와
접근한 대상의 크기로 440x589의 크기의 것을 갖는다.
그림 3은 CT스캔을 이용하여 AIDS환자의 사실이
확대된 대상의 크기로 440x571 크기의 이미지
를 실험에 사용하였다.

PCG(Portable Gray Map) 포맷을 갖는 입력
데이터에 대해 웨이블릿 필터 함수를 적용하였다.
웨이블릿 변환에서는 적용하는 웨이블릿 필터 함수의 모양에 따라 분류 및 구성성의 성능이 크게 좌우되는데 본 논문에서는 영상신호처리에 적합한 정보를 얻는 다수레이저 웨이블릿의 dl8을 사
용하여 필터를 설계하고 적용하였다. 저주파이미지
을 구하기 위해 저주파와 웨이블릿 필터 함수
를 구하고, 필터함수를 입력 이미지에 대해 웨이
블릿 변환을 한다. 이때 필터함수를 사용하
며 웨이블릿이 필요한 값을 조정하였다. 실험에
사용한 필터 성공 계수는 1과 같다. 웨이블릿 변환판의 변환을 이용하여 다소 구성성 필터를 설
계하여 구한 필터 함수를 적용하고, 역변환 과정
을 거쳐 저주파의 영상데이터로 구하였다. 다
영상의 이미지는 저주파의 이미지와 동일한 방법
으로 웨이블릿 변환과 역변환이 취해 특정된
이미지에서의 정보를 저주파 데이터를 제시하여
지속적인 히스토그램 변화의 과정을 거쳐
디스플레이 하기에 적합한 정보로 변환을 한

에 취하였다.

비정상성의 투석이 있는 환자의 대사 반
구 이미지에 그림 2를 입력하여 웨이블릿 변환과 역변환을 거쳐 교차 역주파 필터링을 구한 것과 그림 3이 보이고, 대역
주파 필터링 된 이미지가 그림 4, 고주파와 저주파
필터링
이미지를 그림5과 보이고 있고, 각각의 필터링 된 이미지에 대해 적색통과 이미지는 RGB 이미지의 Blue 성분으로, 대역통과 이미지는 Green, 고역통과 이미지는 Red 성분으로 배열하여 나타낸 결과 그림6과 같은 의사결정 이미지를 구하였다. CT 스캔 방법을 이용하여 채팅된 그림7은 대상으로 웨이블릿 변환을 하였다. 그 결과 적색통과 이미지는 그림8, 대역통과 이미지는 그림9, 고역통과 이미지는 그림10, 그리고 필터링 된 이미지를 RGB 이미지로 재배열하여 의사결정으로 향상된 이미지가 그림11이다.

그레이 헤일리의 입력이미지에 대하여 의사결정으로 향상하였을 변환된 의사결정 이미지의 식별능력 향상여부는 각 개인에 따라 주관적이며, 직접적인 성장이 기기 때문에 본 논문에서는 그레이 헤일리의 입력이미지와 웨이블릿 변환을 이용하여 얻은 의사결정 이미지를 확인 보았을 때 이미지의 특점 즉, 그림2에서는 적색 주름을, 그림7에서는 뇌실의 확대여부를 식별하는 능력이 향상 여부를 성별 조사하였다. 65명을 대상으로 조사한 결과 약 94%(61명)가 그레이 헤일리의 입력이미지에 비하여 의사결정 영상에서 이미지의 특성을 보다 빠르게 식별할 수 있다는 결과를 얻었다. 표2는 성별 조사에 대한 결과를 나타내고 있다.

<table>
<thead>
<tr>
<th>필터</th>
<th>LDF</th>
<th>HDF</th>
<th>LRF</th>
<th>HRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>적색통과 영상</td>
<td>1.0</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>대역통과 영상</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>고역통과 영상</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

표 1. DWT, IDWT 시 필터 상쇄값표

<table>
<thead>
<tr>
<th>식별이 용이한 백분율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>의사결정 이미지</td>
</tr>
<tr>
<td>그레이 이미지</td>
</tr>
<tr>
<td>합계</td>
</tr>
</tbody>
</table>

표 2. 의사결정 이미지와 그레이 이미지의 식별능력 비교 실험조사표
본 논문에서는 256 레벨을 갖는 뇌의 그레이 영상 이미지에 대한 전단능력 향상을 위해 데이
블롯트를 이용한 의사결리 변환에 대한 기법을 제
안하였다. 의사결리로 변환된 이미지는 이미지의
정제 구분이 그레이 이미지보다 향상하고 따라서
뇌조직의 이상유무에 대해 신속한 판단이 가능하
다. 또한 기존의 주파수 필터를 이용한 의사결리
변환법에서는 그레이 이미지의 시간영역신호를
주파수영역으로 변환하고 LPF, BPF, HPF 2D
필터를 통해 시간영역으로 역변환한 후 허스
토그램 영역과와 같은 추처리과정을 거쳐하
였다. 이러한 방법은 FFT, IFFT 그리고 필터링 과
정에서 처리시간의 긴고 여리 단계의 변화 과정
을 거쳐야만 하였다. 그러나, 데이블롯트 변환을 이용
할 경우 데이블롯트, 역변환, 허스토그램 영
역화 과정의 3단계만으로 의사결리 변환의 가능
하. 즉, 변환과정을 간소화 하는 이점을 얻을 수 있다. 그레이 영상 이미지를 의사결리로 변환
하였을 때 영상에 대한 데이블롯트 변환과정을
거쳐 얻은 영상이미지의 식별능력은 65%에 대해
설문 조사한 결과 본 그레이 이미지에 비하여 변
환된 의사결리 영상에서 이미지의 특징을 보다
자세히 식별할 수 있다는 결과를 얻을 수 있었다.
본 논문에서는 뇌의 영상 이미지에 대해서만
실험을 하였는데, 향후에는 신체의 각 부분에 대
한 영상 이미지의 특징을 분석하여 나타낼 수 있
도록 적절히 필터설계와 특성 옵음에 대해서 특징
추출이 불가능하도록 하기 위한 연구가 계속 되어
야 할 것이다.

참고 문헌
P. Kruger,"Image Processing by Digital
Computer," IEEE Spectrum, vol.9, no.7,
pp.20-23, 1972
Processing, Prentice-Hall,1989
Systems Approach, Van Nostrand Reinhold,
New York
Processing, Addison welsey Longman
Limited, pp.230-251, 1992
photographic Technique for Image
Enhancement: Pseudocolor Three-SepARATION
Process", Rand, 1970
Enhancement of Nimbus High Resolution
9, No. 3, pp.681-686, 1970
[7] Sheppard, Joseph J. Stratton Roy H. Gazley,
Carli, "Pseudocolor Enhancement of
Biomedical Images", Rand, 1969
Aid Pesudo-coloring Coding of Gray
Image-Complementary Coloring Coding
[9] 김영민, 김윤호, 유경선, "주파수 필터를 이용
한 그레이 이미지의 의사결리 함수", 한국의학
정보통신학회, 2000, vol.4 No.2 pp.522-527
[10] 김자환, 개정된 2차원 해플롯트를 이용한 영
상 데이터의 압축에 관한 연구, 목원대학교
식자학워독문, 1997
Oppenheim, Jean-Michel Poggi, Wavelet
1997
[12] Randy Crane, A Simplified Approach to
Nonorthogonal Wavelets", NCCOSC
Technical Report, TR 1621, 1993
de-cat,browse expand=85