시스템적 상관성을 이용한 에러온닉기법

손남례, 이귀상
전남대학교 전산학과
e-mail:nrson@cs.chonnam.ac.kr, gslee@chonnam.chonnam.ac.kr

Error Concealment Method using Temporal and Spatial Correlation of Motion Vector

NamRye Son, GueeSang Lee
Dept. of Computer Science, Chonnam National University

요 약
이동 통신 채널과 같이 에러 발생률이 높은 환경에서 부호화된 비디오 스트림 전송시 발생한 에러는 비디오 화질에 큰 영향을 줄 수 있다. 본 논문에서 현재 널리 사용되고 있는 H.263 부호화기에서 전송 도중 에러가 발생했을 경우 추가적인 데이터 삽입 없이 효율적으로 에러를 은닉할 수 있는 기법에 관한 제안하였다. 특히 인터프레임 영상에서 손상되거나 손실된 움직임벡터에 대해 시간영역에서 관계가 깊은 이전 프레임에서 손실될록(예,프레임록)과 같은 위치에 있는 복제된 움직임벡터와 현재 프레임에서 손실될록과 인접한 복제들의 움직임벡터 정보를 이용하여 손상된 복제에 대해 에러를 은닉시키는 방법을 제안한다. 기본적으로 손상된 메트코로복물 주변에 인접한 화소값들을 움직임 벡터 추정에 사용한다.

1. 서 론
이동 통신 채널과 같은 저 대역 통신망에서 비디오 전송을 위해서는 높은 압축률을 갖는 부호화 방법들이 사용된다. 이러한 방법들로 부호화된 비디오가 에러율이 높은 통신 채널로 전송될 때, 비트열 에러가 발생하면 복원되지 어려울 뿐 아니라 다른 부분까지 영향을 미치게된다. 이러한 문제들에 대한 해결책으로 ARQ(Automatic Retransmission Request)[1], FEC(Forward Error Correction)[2,3], 그리고 interleaving 기법 등이 제안되었 다. 그러나 ARQ는 재전송을 하기까지 Delay time이 발생하게 되어 처리 과제를 오버헤드를 가중시킬 수 있으며, FEC는 에러 감지나 에러 은닉을 위한 추가 처리량률이 필요한 인터파일 기법은 개방시간이 오래 걸리 는 문제점이 있다[4]. 따라서 본 논문에서는 통신 채널의 에러를 수신측에서 에러의 영향을 최소화하는 에러 은닉 방법을 제안한다. 특히 수신측 영상의 움직임이 큰 경우나 갭이지 변환한 경우 16x16 틀 메트코로복물단위로 복원할 경우 영상이 정확히 복원되지 않기 때문에 주변복 력의 픽셀값을 이용하여 8x8 복لك으로 움직임을 추정한 후, 손상된 메트코로복물을 16x16로 8x8 복복으로 나누어 은닉한다. 즉 공간적으로 인접한 복제만에는 움직임 벡터의 상관성이 높기 때문에 손실될록 또한 주변복물의 움직 임 영역들과 움직임이 비슷한 가능성이 높다. 이러한 특성 을 이용하여 손상된 메트코로복물 주변에 인접한 결합을 정확히 복원된 8x8 복합을 전 프레임에서 움직임 벡터를 추청하고, 추정된 주변복물의 벡터로 가지고 손상된 메트코로 복복에 대해 에러를 은닉하는 방법을 제안한다.

실험은 저 대역 통신을 위한 비디오 부호화 표준으로 널리 이용되고 있는 H.263 부호화기 기반으로 하였다. 본 연구의 구성은 2장에서는 손상된 메트코로복물의 오류 은닉 을 위해 가장 많이 사용되고 있는 관련 연구를 설명하고, 3장에서는 본 논문에서 제안한 방법에 손상된 메트코로복물 의 위, 원쪽 그리고 아래에 인접한 영역에 8x8 복복을 정 의하고, 복복 정합 알고리즘을 통해 손상된 메트코로 복복의 움직임벡터를 추청하여 에러 복원기법을 설명하고, 마지막으로 4장에서는 실험 및 결론을 맺는다.

2. 관련연구
2.1 BMA(Block Matching Algorithm)
BMA는 손실복들의 주변에 비르게 부호화되어 있는 복복과 손실 복복과의 경계선간의 유사성을 고려하여 가 장 유사한 복복경계선을 갖는 복복으로 손실복들을 대체

2.3.1 인접한 메크로 블록의 움직임 벡터 이용
이 방법은 움직임 벡터들의 공간적 상관성을 이용한다.
즉, 화면 개체들의 움직임은 각각 같은 방향을 가지므로 [그림 2]처럼 손실된 움직임 벡터를 추정하기 위해서 손실된 메크로블록의 수직으로 이웃한 메크로블록의 움직임 벡터를 이용한다. 손실된 메크로블록의 움직임 벡터는 \(V_{pp} \) 손실 메크로블록의 바로 위 메크로블록의 움직임 벡터는 \(V_{pp+1} \), 바로 아래 메크로블록의 움직임 벡터를 \(V_{pp+1} \)라고 한다. (a)인 경우에는 상하 메크로블록 모두 움직임 벡터를 가지고 있을 경우, 그들의 평균이 손실된 메크로블록의 움직임 벡터로 이용된다. 만약 중 하나의 메크로블록만 움직임 벡터를 가졌을 경우에는, 그것을 손실 메크로블록의 움직임 벡터로 간주한다. 이렇게 하면 어느 한쪽이 움직임 벡터가 갖지 못했을 경우, 손실 메크로 블록의 움직임 벡터를 0.5로 간주한다. 이 방법은 위와 아래의 메크로블록 모두가 움직임 벡터를 가졌을 때 평균 값을 적용하였을 경우에는 우수한 성능을 나타내지만, 그렇지 않은 경우에는 메크로블록 경계부분에 눈에 거슬리는 현상이 발생한다. 따라서 상하 메크로블록 모두 움직임 벡터를 가지고 있는 경우에 우수한 성능을 나타내는 특성을 만족시키기 위해서, 위아래의 움직임 벡터 모두 이용할 수 있는 방법은 (b)와 같다. 즉 손실 메크로 블록의 위와 아래 메크로 블록이 움직임 벡터 가지지 않았을 경우에 새로운 목표블록('TB: Target Block')을 정의하여 붙이기에서 블록 정렬 알고리즘을 이용하여 움직임 벡터를 예측한다.
이때 목표블록의 폭은 가변적으로 할 수 있는데, 폭이 넓음수록 계산량이 많아진다. 또한 그 폭이 너무 넓으면 정확한 움직임 벡터를 찾을 수 없다. 영역에 따라 폭의 크기에 따라 결과가 달라지며, 실험적으로 이 값은 영역에 일반적으로 쓰일 수 있는 넓이는 8이라는 결과를 얻었다. (c)는 (b) 방법과 계산량은 같으면서 좋은 성능을 얻기 위해 개선된 방법으로, (b) 방법은 위아래의 움직임 벡터의 방향이 반대인 경우에는 예측된 움직임 벡터값이 0에 가까운 값을 결정한다. 이런 문제를 극복하기 위해서 목표블록은 8x8크기(STB: Small Target Block)로 각각 각각의 움직임 벡터를 구하고 평균값을 이용한다. 각 STB에 대해서 각각의 움직임 벡터를 예측함으로써 이론의 문제가 줄 수 있다. (c)에 M은 STB의 예측된 움직임 벡터값이다. 예를 들어, 손실 메크로블록의 위와 아래의 메크로블록 중에서 하나만 움직임 벡터가 있으면 평균에 사용되는 값은 예측된 움직임 벡터 2개와 현재 움직임 벡터의 평균값으로 추정된다. 두 메크로블록이 모두 있을 경우에는 예측 움직임 벡터값
4개의 평균이 이용된다. (b)와 (c)에서 제안하는 방법들은 단순한 평균 방법 [8]보다는 우수한 결과를 얻을 수 있지만, 복호기에서 응직임 예측을 수행해야 하기 때문에 계산량이 많다는 단점이 있다.

\[
V_{pxe} = \begin{cases}
(V_{pxe} + V_{pxe+1})/2 & \text{or} \\
V_{pxe+1} & \text{or} \\
V_{pxe-1} & \text{or} \\
0 & \end{cases}
\]

(a)

\[
V_{pxe} = (V_{pxe} + V_{pxe+1})/2
\]

(b)

\[
V_{pxe} = (M_1 + M_2 + M_3 + M_4)/4
\]

(c)

[그림 2] 상하로 인접한 메크로블록의 응직임 벡터의 평균

3. 제안 방법

해석측정기법인 두목정할과정은 후보응직임벡터성을 최소의 해석 값을 가진 후보벡터를 선택하여 복원하므로, 후보벡터중에서 가장 작은 값을 가진 해석값을 두조간 응직임 벡터로 선택하여 복원하기 때문에 정확하게 복원할 수 없다는 단점을 가지고 있다. 즉 영상의 응직임이 작은 경우에는 기존 BMA방법은 유사하게 복원할 수 있지만, 영상의 응직임이 큰 경우나 갭이기 변환 경우에는 기존 BMA방법은 복원이 되지 않는다. 따라서 본 논문에서는 두조간 해석가 가장 작은 응직임벡터를 선택한 두목 장에서 응직임벡터로 간주하지 않고, [그림 3]와 같이 측정된 해작부(Distortion)이 임계치(Threshold) 이하이면 최적의 응직임 벡터로 선택하여 복원한다. 그렇지 않은 경우 임계치 이상의 해역을 선택하는 경우에 메크로블록을 8×8로 나누어 주 프레임에서 응직임 벡터를 추출하고 예측된 응직임 벡터를 이용하여 (식2)와 같이 손실된 블록을 8×8단위로 예측을 얻는다. 임계치 측정값과 500 정도가 적당하였다.

\[
MV_1 = W_1 T \cdot MV_1 + W_2 L \cdot MV_1
\]

\[
MV_2 = W_1 T \cdot MV_2 + W_2 L \cdot MV_2
\]

\[
MV_3 = W_1 L \cdot MV_2 + W_2 B \cdot MV_2
\]

\[
MV_4 = W_1 L \cdot MV_2 + W_2 B \cdot MV_2
\]

(식2)

손실된 메크로 블록은 16×16 단위이지만, [그림 4]와 같이 8×8 단위로 복원을 하므로 영상의 급격한 변화에 적합적인 복원이 이루어진다. 또한 보통 영상이 수평으로 많이 움직이므로 (식2)와 같이 손실된 메크로블록의 응직임 벡터보다 상, 하 메크로블록의 응직임벡터가 더 중요하므로 Weight을 더 많이 부여하여 실험하였다.

[그림 4] 8×8 단위로 응직임벡터 추출 및 복원

4. 실험 및 결과

실험은 각 176×144 pixels/lines의 Suzie, Carphone, Foreman, 그리고 Mother&Daughter 영상을 실험하였다. 이때 영상은 응직임이 많거나 갭기 응직임이 발생한 프레임을 선택하여 실험하였다. 실제 이동 촬영 상에서의 건축물도를 재현하기 위해 블록 손실율은 5%~20%까지로 변경하게 주었으며, 다음에서 손실단준을 위치를 변경하게 주었지만, 이동 촬영 채널의 특성으로 MB 단위의 여러 발생과 GOB(Group Of Block)단위로 손실이 발생할 수 있으므로 적절하게 예측을 주었다. [표1]은 기존
이동통신 채널과 같은 저대역 통신망에서는 비디오 전송을 위해서는 높은 압축률을 갖는 부호화 방법들이 사용되는데, 본 연구에서는 저대역 통신을 위한 비디오 부호화 표준인 H.263 부호화를 기반으로 전송도중 손상된 움직임 벡터의 복원기법을 제안하고 실험하였다.

제안된 알고리즘은 정확한 손실부록의 움직임 벡터를 찾아 거의 완벽하게 복원하기도 하지만 정확한 움직임벡터를 찾지 못하는 경우에도 주변부록과 가장 비슷한 움직임벡터를 찾아서 예를 응용하는 효과가 있다. 제안된 방법으로 복원된 영상은 전체적으로 눈에 거칠어지는 오류가 생기지 않으므로 주관적인 화질이 좋았고, 또한 PSNR 측면에서의 영상의 움직임 정도에 따라 기존 BMA 방법보다 약 0.5dB~2dB까지의 향상이 있었다.

참고문헌