웹 기반 RMON 에이전트 시스템
설계 및 구현

이경남*, 김명균*, 김진수**
*울산대학교 컴퓨터 정보통신공학부
**건국대학교 컴퓨터과학전공
e-mail: mkkim@mail.ulsan.ac.kr

Design and Implementation of a Web-based
RMON Agent System

Kyung-Nam Lee*, Myung-Kyun Kim*, Jin-Su Kim**
* School of Computer Engineering and Information Technology, University of Ulsan
**Dept. of Computer Science, Konkuk Univ.

요약
본 논문에서는 네트워크 개정 및 어플리케이션 개정된 트래픽 분석을 수행할 수 있는 RMON2 MIB
를 이용하여 LAN 셌크먼트의 트래픽을 분석하는 웹 기반 RMON 에이전트 시스템을 설계하고 구현
하고자 한다. 구성된 RMON 에이전트 시스템은 제어기능 설정 모듈과 패킷 수집 모듈 그리고 패킷
분석 모듈로 구성된다. 제어기능 설정 모듈은 관리자가 RMON 에이전트가 수행할 제어기능과 제어
인자를 설정하는 기능을 수행한다. 패킷 수집 모듈은 네트워크상의 패킷을 수집하고 패킷 분석
모듈은 설정된 제어 기능에 따라 수집된 패킷으로부터 필요한 정보를 얻어 RMON MIB 에 따라 설
계된 데이터베이스에 저장한다. 본 RMON 에이전트 시스템은 웹 인터페이스를 사용하여 관리자가
인터넷을 통해 제어기능 설정 및 모니터링할 수 있게 함으로써 대규모 네트워크에서 많은 RMON
에이전트 시스템의 관리를 용이하게 할 수 있으며, PC 상에서 순수한 소프트웨어만으로 구현되었
으므로 고가의 RMON 장비 없이 효율적인 네트워크 관리를 수행할 수 있다.

1. 서론
오늘날 정보화가 급속히 진행되면서 네트워크 사용
이 일반화 되고, 각 기업이 인터넷/인tranet의 영주
속에서 많은 부분의 업무를 네트워크에 의존하고 있
다. 인터넷의 성장과 함께 그 응용 프로그램의 사용
이 증가하고 있으며, 네트워크가 대형화, 복잡화 되
고 이를 이용한 업무처리가 증가하면서 네트워크상에
많은 트래픽을 유발하게 되고 이로 인한 여러 장애
요인을 발생시키고 있다. 이는 자연히 네트워크 관리
의 중요성을 부각시켜졌고 효율적인 네트워크
관리를 위한 여러 가지 노력들이 진행되고 있다.
현재 네트워크 관리 위해서 관리자(Manager)와
에이전트(Agent)사이에 정보를 주고 받기 위한 표준
프로토콜로는 SNMP, CMIP 등이 있으며, 관리되어야 할
특정한 정보, 자원을 객체화하고, 이런 객체들을 모
아놓은 집합체를 MIB(Management Information Base)
라 하여 계층별로 묶어있으면서도 구현되고 있
다.
기존의 네트워크 관리 장비들은 관리되고자 하는
장비마다 SNMP 에이전트가 내부 프로세스로 동작하고
있어야 하며 이 SNMP 에이전트는 관리자의 요구에 따라
자신이 관리하고 있는 MIB 와 관리 객체의 값을 얻어
오거나, 변경하는 기능을 수행했었다. 이러한 방식은
주기적인 평정을 요구하는 반복로운 작업이었으며 네
트워크 트래픽을 증가시키는 요인이 되었다. RMON 이
등장하면서 관리자는 에이전트를 주기적으로 평령
할 필요가 없어졌으며, 하나의 서브네트워크에 오직
하나만의 RMON 에이전트가 동작하고 있으면 서브네트
워크상 존재하는 모든 단말들의 통계 정보들을 모

615
을 수 있으며, 이 외에도 부가가치가 높은 관리 정보를 제공함으로써 관리자의 부담을 상당히 덜어주게 되었다[1]. 그러나 이러한 RMON 에이전트가 담겨있는 고가의 라우터나 레크 장비를 구비하는 것은 네트워크 관리자에게 관리 비용에 대한 부담을 안겨 준다.

본 논문에서 제안된 웹 기반 RMON 에이전트 시스템은 네트워크 관리 표준 프로토콜인 SNMP 대신 HTTP를 통해 관리되고 정보 교환을 이루어지므로 관리자는 가장 쉽게 네트워크 어디에서도 웹 브라우저를 통해서 에이전트 시스템을 제어하고 네트워크 트래픽을 모니터링할 수 있다. 웹 브라우저로부터 관리자의 관리 요구를 받아들이고 이에 해당하는 값을 관리자에게 제공하는 것은 자바 애플리케이션이 담당하며, 이는 에이전트 자바 보안 모델을 따르기 때문에 HTTP를 통해 쉽게 복사할 수 있는 투명한 확장 라이브러리를 가지고 있어 네트워크 환경이나 분산환경에 적합하기 때문이다.

본 논문의 2장에서는 본 시스템 구현을 위한 기반 기술에 대해서 살펴보고, 3장에서는 본 논문에서 구현한 RMON 에이전트 시스템의 구조, RMON 과 관련된 MIB 항목을 살펴 보았다. 4장에서는 본 논문에서 구현된 시스템을 실제 LAN 세그먼트상에서 실행한 결과를 본 시스템의 탐장을 검토해 보았다. 끝으로 5장에서는 이 논문의 기대 효과와 추후 연구과제의 제시로 끝을 냈다.

2. 네트워크 패킷 수집 기술

네트워크 상의 모든 패킷들을 수집하여 이를 분석하고 있는 정보를 추출하기 위해서는 직접 NIC(Network Interface Controller)에 접근 할 수 있어야 하는데, Windows OS 환경에서는 NDIS(Network Device Interface Specification)를 통해 NIC에 접근 접근할 수 있다. NDIS는 현재와 같이 하네스 이상의 프로토콜 사용이 필요한 뿐 아니라 다른 감독기와 여러 개의 네트워크 어댑터 카드를 사용할 경우에 다중 프로토콜을 사용할 수 있는 다중 카드 드라이버 어댑터 역할을 한다.

3. RMON 에이전트 시스템 설계

3.1 시스템 전체 구조

(그림 3)에서 보듯이, 전체 시스템은 관리 정보 수집 시스템과 관리 정보 처리 시스템으로 구분된다. 관리 정보 수집 시스템은 관리 항목에 대한 정보를 수집하여 데이터베이스에 저장하는 역할을 한다. 관리 정보 처리 시스템은 자바 애플리케이션으로 구현되었으며, 웹 브라우저로부터 관리자의 관리 요구를 받아 들여 RMON 에이전트의 기능을 제어하고 관리자에게 관리 정보를 제공하는 인터페이스 역할을 한다.

3.2 관리 정보 처리 시스템 구조

관리자에게 관리 정보를 제공하기 위한 애플리케이션으로서 관리 요구 분석, 관리 정보 제공, 분석 결과 출력기로 구성된다. 애플리케이션은 현재 RMON 에이전트 시스템이 관리하고 있는 항목들을 라디오 버튼, 토글 박스 등의 인터페이스에 제공하며, RMON 에이전트의 기능을 설정하고 관리 정보를 얻기 위해 관리자에게 전속한 인터페이스를 제공한다. 관리자는 관리 기능 설정에 의해서 분석된 항목에 대해서 관리 요구를 하게 되고 애플리케이션 관리자의 요구를 분석하여 관리 정보.
보 제어하기에 넣겨 준다. 관리 정보 제어기는 관리 요
구 항목을 적절한 SQL 쿼리 문으로 변환하여 ODBC 를
통해 데이터베이스에 접근하여 원하는 관리 정보를
가져온다. 이렇게 가져온 정보는 분석 결과 출력기에
서 그래프 등으로 관리자에게 네트워크 정보를 제공
한다.

(그림 3) 전체 시스템 구성도

3.3 관리 정보 수집 시스템

관리 정보 수집 시스템은 쌍핑 수집 모듈, 쌍핑 분석 모듈, 데이터베이스, 제어 모듈로 구성이 된다. 쌍핑 수집 모듈에서 서브네트워크상의 모든 메스을 수집하
기 위해서는 드라이버의 라이브러리를 이용해 네트워크 카드를 “promiscuous” 모드로 설정해 주는데, 이렇게 함으로써 네트워크 카드는 목적지 주소가 자
신의 주소가 아니라도 모든 메스을 검출하여 (그림 2)와 같이 가장 드라이버 내의 버퍼로 수집하게 된다. 이 수집된 메스은 분석 모듈의 버퍼로 옮겨져 쌍
핑 분석이 이루어진다.

쌍핑 수집에서 수집된 메스들은 쌍핑 분석 모듈에서
분석을 통하여 RMON MIB 별로 미리 정의 되어 있는
데이터베이스에 그 결과 값이 저장되는데, 분석을 행
하기 위한 RMON MIB 분석 항목은 다음과 같다.

1) statistics 그룹

statistics 그룹에서는 서브네트워크 상의 기본적인 통계 정보를 갖는 항목들을 정의해 놓고 있다[1].

<table>
<thead>
<tr>
<th>분석 항목</th>
<th>관련 MIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>이용율</td>
<td>etherStatsPkts, etherStatsOctets</td>
</tr>
<tr>
<td>패킷 크기</td>
<td>etherStatsPkts64Octets, etherStatsPkts65to127Octets, etherStatsPkts128to255Octets</td>
</tr>
<tr>
<td>별 분포율</td>
<td>etherStatsPkts256to511Octets, etherStatsPkts512to1023Octets, etherStatsPkts1024to1518Octets</td>
</tr>
<tr>
<td>패킷 유형</td>
<td>etherStatsBroadcastPkts, etherStatsMulticastPkts, etherStatsPkts</td>
</tr>
</tbody>
</table>

2) protocolDist 그룹

각 프로토콜별로 유출입되는 패킷량과 익색량을 얻
기 위한 항목들을 정의해 놓고 있다[1].

<table>
<thead>
<tr>
<th>분석 항목</th>
<th>관련 MIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>유출입</td>
<td>ProtocolDistControlIndex, ProtocolDirLocalIndex, ProtocolDistStatsPkts</td>
</tr>
<tr>
<td>패킷량</td>
<td>ProtocolDistControlIndex, ProtocolDirLocalIndex, protocolDistStatsOctets</td>
</tr>
<tr>
<td>익색량</td>
<td>ProtocolDistControlIndex, ProtocolDirLocalIndex, protocolDistStatsOctets</td>
</tr>
</tbody>
</table>

4. 실험 결과

본 시스템은 본교의 서브네트워크에서 관리 분석을
실행했으며 RMON 에이전트 시스템의 OS 환경은
Windows NT이며, 웹 서비스를 위한 HTTP 데몬은
Windows NT에서 제공되는 IIS(Internet Information Server) 4.0을 사용했다. 대상 네트워크 환경은 이더넷
이다.

(그림 4)는 웹 브라우저로 본 시스템에 접근하여
얻은 에플리케이션. 현재 에이전트가 분석하고 있는 프로토콜에 대한 인자 값을 설정한다.

(그림 5)는 관리 항목에 대한 실시간 폴링 결과를
초당 패킷량으로 관리자에게 그래프로 제공되는 것을
보여준다.
5. 결론

본 논문에서는 네트워크 관리를 위하여 별도의 고가의 하드웨어 장비 없이, PC 상에서 순수 소프트웨어 만으로도 네트워크 관리 시스템 구현이 가능함을 보았다. 이를 위하여 NIC 접근 기술에 대해서 기술하였으며, 본 시스템을 실제 서브넷워크상에서 관리 분석을 실행해 봤으며, 본 시스템의 탐색성을 검증해 보았다. 특히 본 논문에서 기존의 네트워크 관리 프로토콜로 주로 사용된 SNMP 대신 HTTP 를 사용하여 RMON 에이전트 시스템을 설계함으로써 관리자가 네트워크상의 어디서나 웹 브라우저만으로 쉽게 에이전트 시스템을 관리할 수 있으며, RMON 에이전트 시스템 설계자가 SNMP 메모리 커다란 MIB 규칙을 따라야 하는 부담을 줄였다. 또한 웹 기반 네트워크 관리는 웹이 가지는 장점을 네트워크 관리에 적용할 수 있어 접근성이, 서버 인증, 자료 압호화등 많은 이점이 있다.

앞으로의 연구결과로는 HTTP 를 이용하여 네트워크에 존재하는 네트워크 에이전트 시스템들의 관리 정보를 통합하기 위한 방법과 표준이 연구되어야 할 것이다.

참고문헌