The Modeling of Chaotic Nonlinear Systems Using Wavelet Neural Networks

*Sang Woo Park *Jong Tae Choi *Tae Sung Yoon *Jin Bae Park *Yoon Ho Choi
Dept. of Electrical & Electronic Engineering, Yonsei Univ.
**Dept. of Electrical & Electronic Engineering, Changwon Univ.
***Dept. of Electronic Engineering, Kyunggi Univ.

Abstract - In this paper, we propose the modeling of a chaotic nonlinear system using wavelet neural networks. In our modeling, we used the parameter adjusting method as the training method of a wavelet neural network. The difference between the actual output of a nonlinear chaotic system and that of a wavelet neural network adjusts the parameters of a wavelet neural network using the gradient-descent method. To verify the efficiency of this paper, we perform the simulation using Duffing system, which is a representative continuous time chaotic nonlinear system.

1. 서 론
비선형 동역학 시스템에서 발생하는 혼돈(Chaos) 현상은 시스템의 상태 변수들 간의 비선형적 관계로 인하여 내부적으로 결정론적 구조를 가지지 않고, 임의적으로 초기 조건에 민감하고 비가능한 특성을 갖기 때문에 이러한 혼돈현상은 재현하려는 연구들이 진행되고 있다[1]. 혼돈현상에 대한 기존의 제어 방법들[2,3,4]은 주로 정확한 시스템 모델이나 비선형 방정식을 필요로 하므로 실제 물리적 정확한 모델을 알 수 없는 혼돈 시스템에 대하여 적용한 경우에 시스템의 구조를 정확히 하거나 변형시켜 혼돈 특성을 정확히 고려하지 못한다는 점이 있다. 따라서 이러한 한계를 극복하기 위하여 제어 제어 신경 최고의 구조를 선정하려는 기법이 사용된다[5,6]. 이 개념을 모델링을 모방한 새로운 최고의 수학적으로 정확하게 표현되지 않은 시스템을 학습 알고리즘을 통해 모델링 및 제어할 수 있다는 장점을 갖고 있다. 하지만 신경 최고의 학습이 많은 시간이 요구되며, 학습 속도는 동일한 최고의(LOCAL MINIMA)에 빠질 수 있다는 단점을 가지고 있다. 본 논문은 이러한 단점에 대한 해결 방안으로 주파수와 시간 영역에서의 우리 혼돈 현상을 이해하는 데 도움을 주기 위하여 유리함과 뛰어난 학습능력을 갖는 신경 최고의 학습 알고리즘을 이용한 최고의 신경 최고의 모델링을 제안한다. 또한 모델링 방정식 대표적인 선적식인 혼돈의 비선형 시스템 Duffing 시스템에 적용하여 본 논문에서 제안한 방법의 우수성을 검증한다.

2. 웨이블릿 신경 최고의
웨이블릿 이론은 최초 다중분해 해석 분야에서 제안되었으며, 이는 주로 영상과 신호처리의 분야에서 많이 적용, 발전되었다. 일반적으로 웨이블릿 모체 웨이블릿(mother wavelet)에 대한 변형 인자(translation) m과 확장 인자(dilation) d로 구성되어 있다. 웨이블릿 신경 최고의에서 웨이블릿 함수를 결정하는 몇 가지 방법이 있다. 첫 번째 방법은 직교(orthogonal) 웨이블릿 분해 아론으로부터 적절한 모체 웨이블릿을 선택하고 이를 결정하는 m, d를 고정으로 두고 웨이블릿 노드와 출력 노드 사이의 가중치만을 학습하여 결정하는 방법[7]이 있다. 또 다른 방법으로는 데이터의 공간적 해석 방식에 따라 결정된 m, d를 가지고 웨이블릿 노드와 출력 노드간의 가중치를 학습, 정신하는 방법으로, 이것은 웨이블릿 정합이 앞에서 말한 방식처럼 반드시 적절한 값을 가지는 값은 없다[8]. 마지막 방법은 m, d를 일의의 실수 두고 웨이블릿 노드와 출력 노드간의 가중치 학습시 m, d로 동시에 학습, 정신시키는 방법이 있다. 본 논문에서는 마지막 방법을 이용하여 모델링의 방법을 기술한다.

2.1 웨이블릿 신경 최고의 구조
그림 1은 N개의 입력, 하나의 출력과 웨이블릿 총으로 구성된 웨이블릿 신경 최고의 구조를 나타낸다.

그림 1. 신경 최고의의 구조
그림 1에서 C층은 웨이블릿 신경 최고의 입력을 나타내며, 입력은 \(x = [x_1, \ldots, x_N] \)의 벡터로 표현된다. 또한 B층은 웨이블릿 함수로서 각 노드에 대한 웨이블릿 함수는 다음과 같이 정의된다.

\[
\phi_j(x) = \phi\left(\frac{x - m_j}{d_j}\right)
\]

여기서 \(m_j \)와 \(d_j \)는 각각 \(j \)번째 웨이블릿 노드의 변형 인자 및 확장 인자로서 실수값을 가지며 \(d_j > 0 \)이다. 또한 모체 웨이블릿으로는 식 (2)와 같이 Gaussian 함수의 1차 미분값으로 선택하였다.

\[
\phi(x) = -x \exp\left(-\frac{1}{2} x^2\right)
\]

(2)
\[\Phi_i(x) = \prod_{k=1}^{N_i} \Phi(z_k) \quad \text{with} \quad z_k = \frac{\tau_k - m \theta}{d \theta} \quad (3) \]

이에 따라, \(j = 1, \ldots, N_p\)이고, \(k = 1, \ldots, N_i\)이며, \(N_p\)는 입력의 수와 웨이블릿의 차원의 일부를 고려한 \(N_p\)는 \(B\)층의 웨이블릿 함수의 수를 의미한다.

그림 1에서의 C층은 웨이블릿 신경 회로망의 출력을 나타내며, 식 (4)와 같이 표현 할 수 있다.

\[y = \sum c_i \Phi_i(x) + a_0 + \sum a_i \alpha_i \quad (4) \]

이번에 \(\theta\)는 웨이블릿 신경 회로망의 학습률을 통하여 생성되는 파라미터들의 집합으로서 다음과 같다.

\[\theta = (m, d, c_i, a_i, a_0) \quad (5) \]

인공 신경회로망의 출력 \(\theta\)와 \(\theta_0\)는 입력노드와 출력노드 사이의 가중치이며, \(c_i\)는 웨이블릿 노드와 출력노드사이의 가중치이다.

3. 웨이블릿 신경회로망을 이용한 모델링

3.1 Duffing 시스템

본 논문의 모델링 대상으로는 연속 시간 혹은 비선형 시스템인 Duffing 시스템을 선택하였으며, Duffing 시스템의 시계열 방정식은 식 (6)과 같다.

\[\ddot{x} + p \dot{x} + r x + x^3 = q \cos(\omega t) \quad (6) \]

여기서 \(x\)는 시변수이고, \(p, r, q, \omega\)는 점수계수이다.

시계열 방정식 설명 (6)을 \(y = x\)로 두어 상대 방정식으로 표현하면 식 (7)과 같이 소트레인지 이어트리트 (strange attractor)는 그림 2의 같다.

\[\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} p & 0 \\ -r & -p \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - x^3 + q \cos(\omega t) \quad (7) \]

여기서 사용한 파라미터의 값은 다음과 같다.

\(p = 0.4, r = -1.1, q = 2.1, \omega = 1.8\)이다.

그림 2. Duffing 시스템의 소트레인지 이어트리트

3.2 혼돈 시스템의 모델링

3.2.1 시스템 모델링을 위한 신경 회로망의 구조

본 논문은 신경회로망과 파라미터에 대해 수학적으로 보고하는 이론적 다양한 연속 시간 혹은 비선형 시스템을 모델링 대상으로 한다. 본 논문에서 사용된 웨이블릿의 목적은 시스템에 출력 \(y\)의 웨이블릿 신경회로망의 출력 \(\Phi(x)\)의 추적을 이용하여 각 파라미터들을 학습시킴으로써, 추어진 시스템을 정확하게 모델링할 수 있는 목적이다. 그림 3은 모델링 방법을 이용하여 각 파라미터를 학습시키기 위한 구조를 나타낸다.

\[\frac{\partial f(n)}{\partial a_k} = -v(n) \frac{\partial \Phi(x)}{\partial a_k} \quad (12) \]

각 파라미터 벡터는 다음과 같다.

\(-\text{파라미터 } a_0 : \]

\[\frac{\partial \Phi(x)}{\partial a_0} = 1 \quad (13) \]

\(-\text{적정 선택 파라미터 } a_k : \]

\[\frac{\partial \Phi(x)}{\partial a_k} = \Phi (x), \quad j = 1, \ldots, N \quad (14) \]

\(-\text{합계 } c j : \]

\[\frac{\partial \Phi(x)}{\partial c_j} = \Phi_j (x), \quad j = 1, \ldots, N \quad (15) \]

\(-\text{변환 인자 } m_k : \]

\[\frac{\partial \Phi(x)}{\partial m_k} = -c_j \frac{\partial \Phi_j (x)}{\partial a_k}, \quad k = 1, \ldots, N; j = 1, \ldots, N \quad (16) \]

여기서 \(\Phi_j (x) = \Phi (x), \Phi (x) \ldots \Phi (x)\) 등이, \(\Phi (x)\)은 \(x\)에서의 스칼라 모제 웨이블릿의 \(z\)에 대한 미분값을 이용하여 \(\Phi (x)\)는 식 (17)과 같다.

\[\Phi (x) = (x^2 - 1) \exp (-\frac{1}{2} x^2) \quad (17) \]
\[\frac{\partial y(n)}{\partial d_y(n)} = \frac{c_j}{d_y} \sum_{k=1}^{N_j} \frac{\partial \Phi_j}{\partial z_k} \quad k=1, \ldots, N_j; j=1, \ldots, N \]
(18)

\[m = \frac{1}{2} (a + \beta) \]
(19)

\[d = 0.2 (\beta - \alpha) \]
(20)

모델 성능에 대한 모범성의 조건은 (7)에서 주어진 형태 방정식을 이용하였고 각 파라미터의 초기값으로 \(p = 0.4, q_1 = -1.1, q_2 = 2.1, w = 1.8 \)의 값을 설정하였다. 학습을 위한 샘플링 주기는 0.01초로 설정하였다. 또한 웨이블릿 신호회로는 그림 1과 같이 1개의 온도를 갖는 갖추기로 사용하였으며, 웨이블릿 신호회로 입력은 Duffing 시스템 모델을 동작하기 위하여 2개로 하였고, 학습 방법으로는 경사 하강법 알고리즘을 사용하였다.

모델의 제작에 따라 제거 해이블릿의 수를 5개로 하여 학습은 0.2, 그리고 학습 반복수를 500회로 설정하여 모델의 성능을 검증하였다. 그림 4와 같이 모델에 대해 정확한 동작의 결과를 보인다. 이때의 오차는 시계에 따라 0으로 수렴함을 알 수 있으며, 평균 제거 오차 (Mean Square Error)는 9.4254 \times 10^{-2}의 값을 갖는다.

동일한 조건하에 신호 회로방을 이용하여 시스템 동작한 결과는 그림 5와 같이 시스템의 동작에 대한 토론을 보이며 평균 제거 오차의 값이 0.0054로 웨이블릿 신호회로방에 비해 약 5.73배 크게 나타나고, 또한 오차가 일정한 값에 수렴하지 않고 계속적으로 파문이 생길을 보인다.

이상의 결과에서 본 논문에서 제안한 웨이블릿 신호회로방은 시스템 모델링의 개념을 기존의 신호회로방 모델링 기법보다 체계적으로 우수한 성능을 보임을 알 수 있다.

<table>
<thead>
<tr>
<th>웨이블릿 / 뉴런 노드 수</th>
<th>모델 학습률</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>WNN</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

5. 결론
본 논문에서는 혼돈 비선형 시스템의 직접 적용 제어 방식에 기초한 웨이블릿 신호회로방을 이용한 시스템 모델링을 제안하였다. 웨이블릿 신호회로방의 파라미터는 혼돈 시스템의 실제 출력과 WNN 모델의 출력의 오차에 의해 학습, 개선되며, 경사 하강법에 의해 계계되었다. 또한, 본 논문에서 제안한 방법에 의해 대표적인 인공 신경 시스템 혼돈 비선형 시스템의 Duffing 시스템에 적용하여 모델의 성능을 제한한 결과 안정적이고 정확하게 모델을 동작함을 알 수 있다.

[참 고 문 헌]

(1) G. Chen and X. Dong, "From Chaos to Order-Perspectives and Methodologies in Controlling Nonlinear Dynamical Systems," IJBC, vol. 3, no. 6, pp. 1363-1409, 1993