기존 모델 적용 파지 시스템을 이용한 유도전동기의 속도 센서리스 제어

최성태*, 강성훈, 고희선, 남문현, 김석교
경북대학교 전기공과

Speed-Sensorless Control of an Induction Motor using Model Reference Adaptive Fuzzy System

Sung-Deo Choi, Sung-Ho Kang, Bong-Woon Ko, Moon-Hyon Nam, Lark-Kyo Kim
Department of Electrical Engineering, Konkuk University

Abstract - This paper proposes Model Reference Adaptive Fuzzy System (MRAFS) using Fuzzy Logic Controller (FLC) as a adaptive laws in Model Reference Adaptive System (MRAS) in order to realize the speed-sensorless control of an induction motor. MRAFS estimates the speed of an induction motor with a rotor flux of a reference model and adjust the model using the error and the change of error as the input of FLC. The computer simulation is executed to verify the propriety and the effectiveness of the proposed system.

1. 서 론

유도전동기는 구조가 간단하고 가격이 저렴한 반면에 구동을 실현하기 위해서는 필수적으로 전력 변환 장치가 요구되고, 이에 따른 전력 루트 오류와 전력 손실 등에 대한 연구가 필요하다. 그러나, 최근 전력용 변도계 소자의 발달과 고성능 프로세서의 등장으로 전력 전자 기술이 비약적으로 발전하여 저 가격, 고 신뢰성의 전압 및 주파수 변환 장치들이 개발됨에 따라 교류 전동기가 전자공학의 적극 전동기의 역할을 대신할 수 있게 되었다. 특히 유도전동기는 직류 전동기보다 낮은 정격적인 보수 및 빈번한 전동기 제조 및 관리가 필요하다. 진신 대형 전동기의 사용을 꺾을 수 있는 이 점 때문에 고수용 전동기는 사용할 수 있는 심사 방법 및 공작 기계 구동장치 등에 적합이 확대되고 있다[1].

유도전동기의 고속도 속도 제어를 원활하게 실현하기 위해서는 회전자의 정확한 속도 정보가 필요하며, 이를 위해 pulse generator나 encoder 등의 속도 센서를 이용한다. 그러나 유도전동기에 속도 센서를 부착하는 것은 여러 가지 면에서 단점이 가지게 된다. 우선 유도전동기가 가지는 본래의 안정성을 약화시키는, 즉 고정기의 부착으로 인해 정격 이상으로 노이즈를 고려하여야 한다. 따라서 이와 같은 사항으로 인한 제한을 극복하기 위해 속도 센서의 정보를 적합하고 능력이 있는 높은 정확도로 제어되어야 한다. 이러한 제어에 대한 연구가 늘어나고 있다[2].

유도전동기의 여러 가지 속도 센서리스 제어 방식 중 기존 모델 적용 시스템은 물리적 해석이 간단하고 적용이 용이하여 비교적 복잡성가운 제어구조의 하나이지만, 그 방식을 이용한 유도전동기의 속도 센서리스 제어에 사용되는 파라미터들이 모두 결정된 값 또는 미정해여 가지고 있으므로 기존의 적용 구조를 개선해야하는 연구가 시도되고 있다[3][4].

본 논문에서는 기존 모델 적용 시스템의 적용 구조로 되어 제어기를 사용하여 회전자의 속도를 추정하고, 이를 사용하여 전 속도 영역에서 만족할 만한 성능을 얻을 수 있는 제어 시스템을 제안하고자 한다. 또한 컴퓨터 시뮬레이션을 통하여 제안한 알고리즘의 타당성과 유 효성을 검증하고자 한다.

2. 본 론

2.1 유도전동기의 동가 모델

유도전동기는 동기 발생기와 전자회로의 결합으로 인하여 매우 복잡하며, 회전자의 시변계수를 가지는 복잡한 진입 미분방정식으로 표현된다. 또한, 제한 방법에서의 전동기의 경우로 간단하게 나누는 것이 거시적으로도 쉽게 표현할 수 없으므로, 각 차원의 정량적 정의를 가리키므로 구축하기 곤란한 공극과 함께 3차 대칭의 정량적 표현을 가정하여 복소 변수(Complex variable)를 도입함으로써 동기 전동기에 대한 고전적인 회전자의 간결한 표현을 가정하는 d-q 동가 모델(d-q equivalent model)을 얻어 사용한다[5].

유도전동기의 결과의 3차 대칭 전도 분포를 가정하고, 속도에서 투과되는 자기회로의 부등형성과 가속의 고주파 성분 등을 무시하면 3차 대칭 유도전동기의 동가 모델은 아래 그림과 같다.

그림 2.1 3상 대칭 유도전동기의 동가 모델

Fig. 2.1 Equivalent model of 3-phase symmetrical induction motor

유도전동기의 제어와 전환에 대한 진행 방정식은 다음 식과 같다.

\[V_{sabc} = (R_s + j\omega L_s)I_{sabc} + \frac{d}{dt}(\omega L_s I_{sabc}) \]
(2.1)

\[V_{sabc} = (R_s + j\omega L_s)I_{sabc} + \frac{d}{dt}(\omega L_s I_{sabc}) \]
(2.2)

본 논문에서는 기존 모델 적용 시스템의 적용 구조로 되어 제어기를 사용하여 회전자의 속도를 추정하고,
위의 두 식을 이용하여 정리하면 유도진동기 dq 등
가 모델은 아래 식으로 표현된다.

$$\begin{align*}
X_{dq} &= R_x V_{dq} + p_d I_{dq} - jw_d I_{dq} \\
&= (R_x + pL_x I_{dq} + L_x p I_{dq}) \\
&- jw(L_x I_{dq} + L_m I_{dq}) \\
X_{dq} &= R_s I_{dq} + p_d I_{dq} - jw - w_0 I_{dq} + L_m I_{dq} \\
&= (R_s + pL_s I_{dq} + L_s p I_{dq}) \\
&- jw - w_0 (L_x I_{dq} + L_m I_{dq})
\end{align*}$$

$$\omega = p\theta$$

2.2 유도진동기의 기준 모델 적용 시스템

일반적으로 유도진동기에서 기준 모델 적용 시스템에
의한 속도 센서리스 제어는 두 추정기의 출력을 비교함
으로써 회전자 속도를 얻는 방식이다. 두 개의 독립적인
모델을 구성하여 회전자 속도가 포함되지 않은 전압 방
정식은 기준 모델로 사용하고, 회전자 속도가 포함된 전
류 방정식을 조정모델로 사용한다. 여기에서 전류 방정
식은 식(2.5)을 의미하고, 전류 방정식은 식(2.6)을 의미
한다. 두 모델에 의해 구한 추정자의 차이를 적응 메
커니즘에 적용하여 잡음 및 제어를 위한 속도 추정
값을 구할 수 있다[6].

$$\begin{align*}
\rho \left[\begin{array}{c}
I_x \\
I_y \\
I_{dq}
\end{array} \right] &= \frac{L_x}{L_x} \left[\begin{array}{c}
\omega_x^2 \\
\omega_y^2 \\
-1/T_{\omega}
\end{array} \right] - \frac{R_x + pL_x}{R_x + pL_x} \left[\begin{array}{c}
0 \\
\omega_0 \\
-1/T_{\omega}
\end{array} \right] \left[\begin{array}{c}
I_x \\
I_y \\
I_{dq}
\end{array} \right] \\
\rho \left[\begin{array}{c}
I_x \\
I_y \\
I_{dq}
\end{array} \right] &= \left[\begin{array}{c}
-1/T_{\omega} \\
\omega_0
\end{array} \right] \left[\begin{array}{c}
I_x \\
I_y \\
I_{dq}
\end{array} \right] + \frac{L_x}{L_x} \left[\begin{array}{c}
0 \\
\omega_0 \\
-1/T_{\omega}
\end{array} \right] \left[\begin{array}{c}
I_x \\
I_y \\
I_{dq}
\end{array} \right]
\end{align*}$$

2.2 기준 모델 적용 피자 시스템의 설계

2.2.1 개요

본 논문에서는 기준 모델 적용 시스템의 기준 모델인
전압 방정식과 추정 모델의 전류 방정식을 이용하여 추
정한 자속을 비교하여 그 오차를 피자 제어의 입력으
로 사용하는 방법을 제안하고자 한다. 기존 모델 적용
시스템의 적응 규칙을 사용한 피자 제어기로는 두 모델
에 의해 추정한 자속의 오차와 그 오차의 변화를 제어기 입력
으로 사용하여 피자제어의 각속도를 추정하며, 이 값을 이용하여 기존 모델에서 추정한 자속과 추정 모델에서
추정한 자속이 서로 같아지도록 그 오차를 영(零)으로
만드는 기술을 수행한다. 본 논문에서 제안한 기준 모델
적용 피자 시스템(Model Reference Adaptive Fuzzy System)을 아래 그림에 나타내었다.

그림 2.2 기준 모델 적용 피자 시스템

Fig. 2.2 Model Reference Adaptive Fuzzy System (MRAFS)

2.2.2 피자 제어기

일반적인 피자제어기(Fuzzy Logic Controller)는 그림 2.3에서와 같이 피자화(Fuzzification), 피자수준
(Fuzzy Inference), 피자화(Fuzzification)의 3
단계로 구성된다. 먼저 입력 변수들을 이용하여 입력 변수들
이 피자 값으로 변환하고, 이 값을 이용하여 피자 논리
을 수행하여 주된 출력 값에 대한 피자 결과를 얻는다. 피자
결과로 주된 출력에 영향을 주는 변수들에 대해서는 다음과 같은
7개의 집합이 있다[9].

ZE : Zero
NB : Negative Big
PM : Positive Medium
NS : Negative Small
PB : Positive Big
NM : Negative Medium
PS : Positive Small

그림 2.3 피자 제어기의 일반적인 구조

Fig. 2.3 General Structure of fuzzy logic controller

첫 번째 단계인 피자화 과정에서 입력 값은 그림 2.4
에 표시된 삼각형 소속 함수를 이용하여 피자 변수로
변환한다. 각각의 입력은 7개의 피자 집합으로 나누어진다.
각각의 피자 변수는 소속 범위를 가지고 피자 집합에
소속하게 된다. 이때 소속 범위는 소속 함수를 이용
하여 결정하며 0에서 1사이의 값을 가진다.

그림 2.4 피자 변수의 소속 함수

Fig. 2.4 Membership function of the fuzzy variables

두 번째 단계에서는 피자 변수 e와 ce가 표 2.1의 규
칙을 사용하는 추가 변전을 이용하여 추론 과정을 거친다.
표 2.1에 있는 규칙들은 전문가의 경험이나 시스템
의 동작을 이용하여 얻은 사항이다. 각각의 규칙들은
IF-THEN의 형식으로 표현된다.

표 2.1 피자 규칙

Table 2.1 Fuzzy Rules

<table>
<thead>
<tr>
<th>ce</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
</tr>
<tr>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
</tr>
<tr>
<td>ZE</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>PS</td>
<td>NM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PM</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PB</td>
<td>ZE</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
</tbody>
</table>
2.3 시뮬레이션 및 교감

2.3.1 전체 시스템의 구성
본 논문에서 제안한 기존 모델 적용 봉지 시스템을 이용하여 속도를 추정하는 전체 제어 시스템의 구성도 아래 그림에 나타내었다.

![시스템 구성](image)

그림 2.5 시스템 구성
Fig. 2.5 System configuration

2.3.2 결과 및 고찰
본 논문에서 제안한 기존 모델 적용 봉지 시스템의 성능을 고찰하기 위하여 기존 속도 1500rpm에 대하여 무부하시와 10[Nm]의 부하시의 속도 응답을 시뮬레이션하였다. 그림 2.6과 2.7에 속도응답을 나타내었다.

<table>
<thead>
<tr>
<th></th>
<th>기존 속도</th>
<th>추정 속도</th>
<th>오차(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>무부하시(rpm)</td>
<td>1500</td>
<td>1502</td>
<td>-0.13</td>
</tr>
<tr>
<td>부하반가시(rpm)</td>
<td>1500</td>
<td>1489</td>
<td>0.07</td>
</tr>
</tbody>
</table>

표 2.2 시뮬레이션 결과
Table 2.2 Results of the simulation

![무부하시에 추정한 회전자 속도](image)

그림 2.6 무부하시에 추정한 회전자 속도
Fig. 2.6 Estimated rotor speed with no load

3. 결론
본 논문에서는 유도 전동기의 속도 제어에 속도 센서를 사용함으로 인해 발생하는 여러 가지 문제점을 해결하기 위해서 속도 센서를 사용하지 않고 속도를 추정하는 속도 센서리스 방식에 대해 제안하였고, 제안한 방식으로 추정한 속도를 이용하여 유도 전동기의 속도 센서리스 제어를 수행하였다. 속도 센서리스 제어를 위해 기존의 기존 모델 적용 시스템에 봉지를 적용하여 유도 전동기는 복잡성과 비선형성의 문제를 해결하고자 하였다. 시뮬레이션 결과에서 보듯이 기존 업플로드 1500rpm을 인가하여 무부하시와 부하시 모두 제한한 방식으로 추정한 속도가 기존 속도 속도를 잘 추정하고 있음을 알 수 있다. 그러나, 추정된 속도가 기존 속도와 약 0.1%의 오차를 보이고 있으므로, 향후 이를 보상하기 위한 연구가 필요할 것이다.

[참고 문헌]