프리지 제어기는 기존의 제어 기법이 적용되기 어려운 복잡한 시스템이나 비선형 시스템에 다양하게 적용되어 때때로 기존의 제어기보다 강한하거나 좋은 성능을 보인다고 보고되고 있다. 그러나 프리지 제어기는 시스템의 동적에 관한 사전 지식이 불충분하거나 없는 경우, 적절한 제어작용을 얻을 수 없으며 제어작용 설계에 대한 기준이 없다는 단점이 있다[11]. 신경회로망과 둔은 이론을 결합한 적응 프리지 PID 또는 뉴로-프리지 기법을 응용하여 자동차 최적의 제어 구조를 생성하는 연구결과들이 보고되고 있으나 대부분 제어구조의 생성, 신경회로망의 훈련 과정이 매우 시간 소모 적이고 과학적 계산량으로 실제 적용이 어려다는 단점을 갖추고 있다[12].

본 논문에서는 위와 같은 단점을 개선하기 위하여 PD, PID 제어기의 훈련 과정을 PDI-PD형 프리지 제어기 구조를 사용하였다. 또한 피드백 제어의 입력력 이득, 구조 기반을 기존의 피드백 제어기 일돌 조정법을 이용하여 조기화하고 임계값의 경사값을 이용하여 피드백 제어기의 변수 값을 제어기의 성과를 기준으로 제어작용을 갖도록 하였다.

제시된 제어기는 단순한 구조적 적응 제어당 그레이의 현장공학자에게 익숙한 기존 PID 제어기 중동기법을 이용하여 입력력 이득 및 구조 기반을 초기화함으로써 조기 제어구간 안정성을 보장할 수 있다는 장점이 갖고 있으며 까무 불안정 비선형 시스템에 쉽게 적용하여 제어기의 수활한 성능을 확보하였다.

2. 본론

2.1 피드백 제어기 구조

일반적으로 사용되는 피드백 P20 제어기 구조는 세 개의 입력과 상호 결합된 피드백 구조를 이용하여 제어이력의 한계 이상이 생생하는 방법(Type 1), 세 개의 입력과 독립적인 피드백 구조를 사용하여 비례에, 비례에, 전환에 해당하는 제어기 출력을 각각 생산한 후 이들을 합하여 최종 제어기 출력을 생성하는 방법(Type 2), 그리고 두 개의 입력 간의 상호 결합된 피드백 구조를 이용하여 비례에, 비례에, 전환에 해당하는 출력값을 생성하고 이를 적절하게 얻어진 비례에, 전환에, 전환에 적응성 성분을 합하여 최종 제어기 출력을 생성하는 방법(Type 3)이 있다.

![Fig. 1 Structure of fuzzy PID controller](image)

Type 1 제어기는 세 개의 입력이동이 서로 결합되어 피드백 구조가 생성되기 때문에 구조 생성 과정이 매우 복잡하며 오차감, 오차의 미분감, 그리고 오차의 적분값 또는 오차의 2차 미분값의 입력구간을 각각 \(N_1, N_2, N_3 \) 개의 입력과의 순서대로 분리하여 full rank로 피드백 구조와 생성한다고 가정하였을 때 필요한 구조의 개수는 \(N_1 \times N_2 \times N_3 \) 이다. Type 2는 세 개의 입력에 대해 각각 제어 구조를 설정해야 하며 이 때 필요한 구조의 개수는 \(N_1 \times N_2 \times N_3 \) 이다. Type 3의 경우 일반적으로 옵션 사용되는 PD형 피드백 제어기의 출력값과 이 값을 적절한 값을 합하여 최종 제어기 출력을 생성하여 피드백 구조가 단순화된 구조로 생성하여 필요한 구조의 개수는 \(N_1 \times N_2 \times N_3 \) 이다. 본 논문에서는 구조적 단순성과 계산량의 부담을 고려하여 뉴로-프리지 제어자의 기존 구조로부터 두 개의 입력과 결합된 피드백 구조를 이용하는 피드백 제어기를 사용하였다.
2.2 피지 PID 제어기 설계

피지 제어기는 두 입력인 정규화된 오차값과 오차의 미분값에 해당하는 피지 집합을 각각 A와 B와 할 때, 이들 피지 집합 A와 B를 그림 2와 같이 인접 소속함수와 50%씩 중첩되는 대칭 삼각 소속함수를 갖는 2n+1개의 높이변수로 분할한다. n은 입력의 수를 사용하여도 되지만 제한한 성능을 고려하였을 때 또는 3 정도가 적당하다. 본 논문에서의 n값은 2를 사용하였다.

\[A_i \ (i \in \mathbb{N}) = [N_2, N_1, Z_0, P_1, P_2] \]

\[B_j \ (j \in \mathbb{N}) = [N_2, N_1, Z_0, P_1, P_2] \]

정규화된 오차값 a와 오차의 미분값 b의 대집합은 각각 \(A \subset R \), \(B \subset R \)이다.

![그림 2 소속 함수 (A & B)](attachment:image1)

그림 2 소속 함수 (A & B)

피지 제어 규칙은 식 (1)과 같은 형태로 설정한다.

\[\text{if } a \text{ is } A_i \text{ and } b \text{ is } B_j \text{ then } u = u_{i,j} \quad (1) \]

이때 \(u_{i,j} \)는 입력변수 \(A_i \)와 \(B_j \)의 중심값의 합으로 입력변수가 아닌 실제값이다. 마지막으로 product-sum 구조법과 무게 중심법 비평형화 기법을 사용하여 피지제어기의 출력 \(f \)를 생성한다. product-sum 구조법은 편의를 이용한 피지 제어기의 편리함을 이용한다.

\[z_{i,j} = A_i(a)B_j(b) \quad (i \in \mathbb{N}, j \in \mathbb{N}) \quad (2) \]

무게 중심법 비평형화를 적용한 제어기의 실제 출력 \(f \)는 식 (3)과 같이 주어진 원.

\[f = \frac{\sum z_{i,j} u_{i,j}}{\sum z_{i,j}} \quad (3) \]

위와 같이 설계된 피지 PID 제어기는 도식적으로 그림 3과 같이 나타낼 수 있다.

![그림 3 PI-PD형 피지 PID 제어기](attachment:image2)

그림 3 PI-PD형 피지 PID 제어기

피지 제어기의 입력정수는 포화 함수를 이용하여 입력 공간을 제한하고 정규화 시켰으며 추가 오차값과 오차의 변화값은 정수가 양의 브로뉴 값으로 변환할 수 있도록 입력정수 이동 \(k_1, k_2 \)를 조정하여야 한다. 오차값과 오차의 변화값을 각각 5개의 구간으로 분할하여 full rank로 규칙을 구성하였으므로 총 25개의 규칙이 생성되었다. 입력의 순간에 적용받는 수는 최대 4개를 넘지 않으며 \(\sum_{i,j} u_{i,j} \)는 그림 4에서와 같이 입력값에 의해 소속함수 점정한 데 도움이 된다.

![그림 4 소속값](attachment:image3)

그림 4 소속값

2.3 피지 PID 제어기 초기 이득 설정
소수 이득, 제어적용, 비평비와 방식을 2.2절에서와 같이 설정하고 입력정수 이득을 적절히 설정하면 피지 PID 제어기의 출력은 그림 5 b)와 같은 구조를 갖는 PI-PD형 싱형 PID 제어기와 매우 유사한 입력적응 특성을 보인다. 그러므로 피지 PID 제어기의 초기 이득값들을 기존의 PID 제어기 동조 기법에 의해 얻어진 비례, 미분적응, 적응적응을 이용하는 구형 방법을 고려할 수 있다.

![그림 5 기존의 PID 제어기와 PI-PD형 PID 제어기](attachment:image4)

그림 5 기존의 PID 제어기와 PI-PD형 PID 제어기

기존의 PID 제어기를 동조시키는 방법으로는 Ziegler-Nichols 방법, 릴레이 조정 방법 등 여러 가지 방법이 제시되었으며 이러한 동조기법에 의해 구현된 비례, 미분적응, 적응적응은 그림 5의 PI-PD형 싱형 PID 제어기의 4개의 이득의 다음과 같은 관계식을 만족한다.

\[K_p = k_1 k_4 + k_2 k_3, \quad K_d = k_2 k_4, \quad K_i = k_1 k_3 \quad (4) \]

이 때 기존의 PID 제어기의 이득 값은 3개의 PI-PD형 PID 제어기의 입력적응 이득 값을 4개로 변형되며 PI-PD형 PID 제어기의 입력적응 이득 중 하나를 설정하여야 한다. 기존이득을 단계적단변환으로 주고 오차값은 일반적으로 1이상을 넘기지 않고 있으므로 피지제어기의 입력정수 정규화 및 제한값을 고려하여 오차와 관련된 이득은 1로 선택하고 나머지 이득 값을 식 (4)를 이용하여 구한다.
2.4 뉴로-패저 제어기 설계

그림 8은 동일한 PID 제어기를 실제 플랜트에 적용한 것임이며 그림 9는 본 논문에서 제시한 뉴로-패저 제어기를 적용하였을 때의 결과이다.

\[
J = \frac{1}{2} (r(kT) - y(kT))^2
\]

\[
E(kT) = r(kT) - y(kT)
\]

\[
\begin{align*}
&u_i(kT) = u_i(k-1) - e(kT)T_{\text{sample}}^2 \\
&k(kT) = k(k-1) - e(kT)T_{\text{sample}}^2
\end{align*}
\]

3. 결론

본 논문에서는 기존의 PID 제어기의 성능을 실제 검증하기 위하여 개두 분산정성 및 비선형성이 강한 시스템으로 알려진 자기부양 시스템을 사용하였다. 시스템의 전기 기계학적 방정식에 실제 변수들을 대입하여 얻은 시스템의 전달함수와 이를 기반으로 정성된 기존의 PID 제어기를 설계하여 얻은 모의실험 결과를 그림 7에 보였다.