Abstract - In this paper, to overcome drawback of FLC an adaptive fuzzy sliding mode controller is proposed. The fuzzy basis function to describe the fuzzy system is introduced. The system parameter in sliding mode are estimated by the indirect adaptive fuzzy control. Adaptive laws for fuzzy parameters and fuzzy rule structure are established so that the whole system is stable in the sense of Lyapunov stability. The computer simulation results for inverted pendulum system show the performance of the proposed fuzzy sliding mode controller.

1. 서론

가변 구조 제어 이론은 본질적으로 분명한 제어입력을 인기함으로써 자연시간이 존재하는 실제 계통에 적용시에는 제어기 설계에 고려하지 않은 특성이 요구되며

상태가 변화하는 양이 발생하고 도달 모드식에 가변구조가 발생하지 않는 시스템 분해 특성만을 갖기 때문에 간결성을 보장하지 못하는 단점 가지고 있 다.

이러한 단점을 보완하기 위해 간결성의 안 되고 복잡한 시스템에 적합한 제어 논리 제어기와 슬라이딩 모드 제어기를 결합한 제어 슬라이딩 모드 제어기가 제안되어 제어讶을 감소시키고 도달 간격을 줄이도록 하였다.

일반적으로 제어 논리 제어기로 사용되는 제어 응용은 전문가의 직관과 경험에 의해 얻어지며 연어적 규칙이나

제어 방식에 의해 표현된다. 그러나 분산 구조는 실제 적응 방법이 없어 시험 완성하기에 논리 전문가의

직관과 경험에 주로 의존하여 제어 제어기의 실제 적용을 어렵게 한다. 따라서 본 연구에서는 제어 규칙을 스

로 생성하여 주는 확장 기법을 이용한 적응 슬라이딩 모드 제어기를 제안하여 도달 전자 시스템에 적용하여 그 유용성을 입증하였다.

2. 슬라이딩 모드 제어

다음과 같이 주어지는 n차 비선형 시스템을 고

리해 보자.

$$\dot{x}(t) = f(x, \dot{x}, ..., x^{(n-1)}) + g(x, \dot{x}, ..., x^{(n-1)})u$$

여기서, $x \in \mathbb{R}^n$는 상태벡터, $u \in \mathbb{R}$. $y \in \mathbb{R}$는 각각 입력과 출력이다. $f, g: \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$은 연속 미분 가능한

비선형 함수(smooth nonlinear function)이다.

추정치는 다음과 같이 정의한다.

$$e = x - x_d = (e_1, e_2, ..., e^{(n-1)})$$

가변 구조 제어 시스템의 동적모델은 도달 모드와 슬라이딩 모드로 이루어져는데 둘에서 슬라이딩 모드 동적모델을 적용한 스위칭 함수 $s(e)$를 설정함으로써 결정되는 데 본 논문에서는 다음과 같은 도달 법칙을 사용하였다.

$$s(e) = -K \text{sgn}(s(e)), K > 0$$

여기서, 수렴속도는 이론 K에 의해 결정된다.

가변 구조 형태의 제어 입력을 구성하기 위하여 다음

과 같은 슬라이딩 모드를 정의하자.

$$s(e) = e^{(n-1)} + k_1 e^{(n-2)} + ... + k_p e + k_0 \int e dt$$

이와 같이 구성된 슬라이딩 모드의 계수는 다음과 같은

Hurwitz 대칭이 되도록 선정한다.

$$\Lambda \lambda + k_1 \lambda^{(n-2)} + ... + k_p \lambda + k_0 = 0$$

따라서, 슬라이딩 모드는 다음과 같이 된다.

$$s(e) = \sum_{i=0}^{p} k_i e^{i} + f(x) + g(x)u - x_d$$

3. 적응 슬라이딩 모드 제어

3.1 기존의 적응 슬라이딩 모드 제어

제어 모델의 형태를 if-then-에 의한 규칙 형태로

가정하고 각 액정 규칙의 참거부는 제어 기기 함수의 선

형 집합으로 가정하면 제어 규칙들의 집합으로부터 비선

형 함수의 추정치 $\hat{f}(x) \theta \beta$, $\hat{g}(x) \theta \beta \gamma$는 다음과 같이 가장 평균 비교적 행으로부터 구해진다.

$$\hat{f}(x) \theta \beta = \frac{\sum_{i=1}^{N} \theta \beta R_i(x)}{\sum_{i=1}^{N} \mu R_i(x)}$$

$$\hat{g}(x) \theta \beta = \frac{\sum_{i=1}^{N} \theta \beta R_i(x)}{\sum_{i=1}^{N} \mu R_i(x)}$$

또한 비선형 함수 $f(x), g(x)$는 다음 식에 의해 계

산된다.

$$\hat{f}(x) \theta \beta = \theta \hat{f}(x) \theta \beta$$

여기서, $\theta \beta$와 $\theta \beta$는 각각 f, g의 파라미터 벡터이고

$\hat{f}(x) \theta \beta$는 제어 기기 함수 벡터로 각 요소에 대한

추정치는 다음과 같다.

$$\hat{f}(x) \theta \beta = \frac{\sum_{i=1}^{N} \theta \beta R_i(x)}{\sum_{i=1}^{N} \mu R_i(x)}$$

$$\hat{g}(x) \theta \beta = \frac{\sum_{i=1}^{N} \theta \beta R_i(x)}{\sum_{i=1}^{N} \mu R_i(x)}$$

최소 근사 오차 ω는 현재 추정하고자 하는 \hat{f}와 \hat{g}
와 실체값의 오차들을 결합시킨 형태의 가중 오차이다.

\[w = (\hat{f}(x) - f(x)) + (\hat{g}(x) - g(x)) w_u \]
(11)

\(s(e) \)의 도함수 \(s(e) \)는 다음과 같이 다시 정의될 수 있다.

\[s(e) = (\hat{f}(x) \theta) - f(x) \theta) + (\hat{g}(x) \theta) - g(x) \theta) w_u \]
(12)

\[+ g(x) u_u + w \]

\(\hat{f}(x) \theta \)와 \(\hat{g}(x \theta) \)는 식 (3)과 (4)로 추계되는 피저 시스템이므로 식 (13)은 다음 식으로 표현된다.

\[s = \Phi^T s \]
(13)

여기서, \(\Phi_I \theta \phi \), \(\Phi_k \theta \phi \) 그리고 \(\xi(x) \)는 피저 기저 함수이다.

\[\text{적응률을 얻기 위하여 다음과 같은 Lyapunov 함수를 정의한다.} \]

\[V = \frac{1}{2} \left(s^T + \frac{1}{\tau_1} \phi^T \phi_I + \frac{1}{\tau_2} \phi^T \phi_k \right) \]
(14)

\[\text{Lyapunov 함수의 도함수는 다음과 같이 표현된다.} \]

\[V' = s \]
(15)

\[+ \frac{1}{\tau_1} \phi^T \phi_I \frac{d}{dt} - \frac{1}{\tau_2} \phi^T \phi_k \frac{d}{dt} \]

\[+ \frac{1}{\tau_2} \phi^T \phi_k \frac{d}{dt} \]

\(s \hat{f}(x) u_u + w \)

\[s \hat{g}(x) u_u + w \]

\[+ \frac{1}{\tau_1} \phi^T \phi_I \frac{d}{dt} - \frac{1}{\tau_2} \phi^T \phi_k \frac{d}{dt} \]

\[+ \frac{1}{\tau_2} \phi^T \phi_k \frac{d}{dt} \]

\[\theta_I, \theta_k \]는 상수이고, \(\theta_I = \frac{d}{dt} \), \(\theta_k = \frac{d}{dt} \)가 되므로 최적규제적응률은 다음과 같이 얻을 수 있다.

\[\theta_I = \frac{1}{\tau_1} \phi^T \phi_I \frac{d}{dt} \]

\[\theta_k = \frac{1}{\tau_2} \phi^T \phi_k \frac{d}{dt} \]

\[+ \frac{1}{\tau_2} \phi^T \phi_k \frac{d}{dt} \]

\[< 0 \]가 보장되기 위해서는 \(K \) 값을 다음과 같이 정의해야 한다.

\[K \geq \frac{\hat{g}}{\hat{g}_I} \omega_{\text{max}} \]
(18)

여기서 \(\hat{g} = \inf_{x \in U} \hat{g}(x) \), \(\hat{g}_I = \sup_{x \in U} \hat{g}(x) \).

\[w_{\text{min}} \leq w \leq w_{\text{max}} \]이다.

\(K \)는 불확실성이 보장되며 완만한 충분히 보상할 수 있는 크기로 설계에 의하여 결정되는 값이다.

3.2 제한적 적용 피저 슬라이딩 모드 제어
본 연구에서는 제어 규칙을 통조심하기 위한 적응 알고리즘을 시스템 레벨의 슬라이딩 모드에 머무르게 하는 제어 규칙의 결정은 파라미터를 수정하는 방법을 이용하였다. 최대 경사법(gradient descent method)에 의해, 결정은 파라미터는 다음과 같이 수정된다.

\[K_j = -\gamma \frac{\partial \hat{g}}{\partial \theta} \]
(19)

여기서, \(\gamma \)는 적응 이동이다.

\[K_j = -\gamma \frac{\partial \hat{g}}{\partial \theta} \frac{\partial u}{\partial K_j} \]
(20)

\[= -\gamma \frac{\partial \hat{g}}{\partial \theta} \frac{\partial u}{\partial K_j} - \gamma \frac{\partial \hat{g}}{\partial \theta} \frac{\partial u_{\text{ref}}}{\partial K_j} \]

\[\text{도표 제어 입력 } u_{\text{ref}} \text{는 상태에만 의존하기 때문에 다음과 같은 식을 얻을 수 있다.} \]

\[\frac{\partial u_{\text{ref}}}{\partial K_j} = 0 \]
(21)

\[\frac{\partial s \hat{f}}{\partial u} \text{을 구하면 다음과 같다.} \]

\[\frac{\partial s \hat{f}}{\partial u} = s \hat{g}(x) \]
(22)

\[\text{스위칭 제어 입력 } u_I \text{으로부터 } \frac{\partial u_I}{\partial K_j} \text{는 다음과 같이 표현된다.} \]

\[\frac{\partial u_I}{\partial K_j} = -\hat{g}(x) \cdot \frac{\partial \hat{g}}{\partial \theta} \]
(23)

\[\text{따라서 제어 규칙의 결정은 파라미터를 수정하는 적응 알고리즘을 이용한다.} \]

\[K_j = \gamma \frac{\partial \hat{g}}{\partial \theta} \]
(24)

\[\text{위 식에서 } \hat{g}(x) \text{의 부호를 알 수 있다면 결론은 파라미터의 수정은 다음과 같이 구할 수 있다.} \]

\[K_j = \gamma \frac{\partial \hat{g}}{\partial \theta} \]
(25)

4. 컴퓨터 모의실험
체계된 적응 피저 슬라이딩 제어 각의 유용성을 보이기 위하여 다음과 같은 도표 전자(cart-pole) 계통을 고려하자.

\[x_1 = x_2 \]

\[x_2 = \frac{g \sin x_1 - \frac{m v^2 x_1 \sin x_1}{m + m}}{K \left(\frac{4}{3} - \frac{m \cos x_1}{m + m} \right)} + \frac{\cos x_1}{m + m} \]
(26)

여기서, 상태 \(x_1 \)과 \(x_2 \)는 그림 4.1에서와 같이 \(x_1 = \theta \)와 \(x_2 = \theta \)를 나타낸다. 또한 도표 전자의 각 파라미터는 표 4.1과 같다.

\[\text{그림 1 도표전자 시스템} \]

표 1 도표전자 시스템의 파라미터

<table>
<thead>
<tr>
<th>시스템</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-acceleration of gravity</td>
<td>g</td>
<td>9.8 m/s²</td>
</tr>
<tr>
<td>mass of cart</td>
<td>m_c</td>
<td>1 kg</td>
</tr>
<tr>
<td>mass of pole</td>
<td>m</td>
<td>0.1 kg</td>
</tr>
<tr>
<td>length of pole</td>
<td>l</td>
<td>0.5 m</td>
</tr>
</tbody>
</table>
차 계통이므로 $m_1 = m_2 = 5$로 설정하였다.

그림 2 파지 면적 함수
도립전자 시스템의 제어 목적은 상태들을 원점으로 수렴시키는 것입니다. 계산된 제어의 적응 이득 γ는 400으로 설정하였다.

그림 3 스위칭 함수 $|s(x)|$의 면적 함수
그림 3에는 제한된 제어기에 사용된 $|s(x)|$의 소속 함수를 나타내었다. 여기서 $s_1 = 0.01$, $s_2 = 0.02$, $s_3 = 0.1$이다. 샘플링 시간은 0.001sec로 하고 0.5 초 이후 부터는 정합과 외란 $2 \sin(20\pi t)$를 이용하여 컴퓨터 시뮬레이션을 수행하였다.

그림 4 가변 구조 제어기의 응답을 나타내었다. 가변 구조 제어기의 경우 스위칭 입력의 크기가 클수록 외란이나 불확실성에 강성이 증가하고 더 큰 초기 편차에 대하여도 기준입력을 안정하게 조정하게 되지만 입력의 고주파 성능이 크게 떨어지는 문제가 발생한다.

그림 5에 제한된 적응 파지 슬라이딩 모드 제어기의 응답을 나타내었고 그림 6에는 제한된 제어기에 의해 동조된 제어 이득을 나타내었다. 제한된 제어기는 가변 구조 제어기에 비해 높은 수렴 속도를 보이면서도 제어의 거리의 수신지가 없다. 적응식의 이득 동조된 제어 이득은 가변 구조 제어기의 제어 이득 보다 상당히 크지만 제어 규제에 의해 추론된 K값이 작아 제어가 감소하였다.

4. 결론

파지 규제는 검색적인 획득 방법이 없는 도립 적응법이나 속성된 전문가의 직관과 경험에 수수의 의존하여 파지 제어기와 같은 적용을 어렵게 한다. 따라서 본 연구에서는 파지 규제를 스스로 생성하여 주는 최대 경험법을 이용한 적응 파지 슬라이딩 모드 제어기를 제안하여 도립 전자 시스템에 적용하여 그 유용성을 입증하였다.

검류타 모의실질 결과 제한된 제어기는 제어가 일어나지 않으면서 제어 문제에 상응적인 응답의 속성과 강성은 모두 가지고 있으며 제어이득을 구하기 위한 제어 규제가 필요없고 정확한 수학적 모델이 필요하지 않기 때문에 제어의 설계가 간편하면서도 성능면에서 우수할 수 있다.

(참고 문헌)