GAを用いた非線形多変数システムのPID制御

* Juseong Coll., ** Chongju Univ.

Abstract - In this paper, PID control method using genetic algorithm to control the nonlinear multivariable system is presented. Genetic algorithms are global search techniques for nonlinear optimization. For experiment, the x-y rod balancing system with driver circuit board is fabricated. Experiments such as angle and position control for system are performed. The validity and control performance of the GA-based PID controller are confirmed by experimental results.

1. 서론

오늘날 제어분야에 대한 많은 이론이 연구되고 있으나 실제 제어기에 적용하는 데는 많은 제약이 따른다. 이러한 이유로 비교적 구조가 단순히 구현이 용이하고 제어 복잡성을 우수한 PID 제어기는 제어분야에 많이 사용되고 있다. PID 제어기는 전장 결정방법은 다양하게 제안되어 오도 운전자의 경험이나 지식에 기반하였다 하더라도 계수 설정을 위한 많은 시간이 필요하여 시스템 종류에는 제어 성능에 많은 차이를 보이고 있다. 반면 GA(Genetic Algorithm)는 최적화 문제와 PID제어같은 분야에 효과적으로 활용할 수 있으며 미세분석어나 빠르고 복잡한 문제에서 강한 특성을 가지는 것으로 알려져 있다.

본 논문에서 제어분야 전문가에 근거한 확실한 최적 방법론 유전 알고리즘을 이용한 PID 제어는 튜닝방법을 도입하였다. 유전알고리즘은 1969 년에 미국의 미국의 헤드하이더에서 소장한 학자생들의 법칙에 기반을 둔 최적화 방법으로서, 재생산, 교배, 돌연변이 등이의 연산자로 구성된다.

본 논문에서는 GA에서 제어가 구현한 PID 제어기술을 컴퓨터상에서 구현하여 I/O모듈을 통해 실제시간처리가 가능하도록 구현하였다. 또한 제어된 제어기술 sublic 방식의 파생제가 제어방식의 성능을 확인하기 위해 비선형, 다변수 시스템 X-Y Rod Balancing System에 적용하여 진도의 각도가 다변수의 위치를 동시에 제어하는 실험을 수행하였다.

2. Rod Balancing System

2.1 시스템 개요 및 구성

Rod Balancing System은 그림 1.에서 보는 바와 같이 대차의 전자가 달라져 있어 힘을 가해지면 대차가 움직이는 시스템이다. 이 동작에 전자의 운동에 영향을 주게 되는 시스템이다. 아래 식(1)과 식(2)에서 보듯이 시스템의 출력은 전자의 운동과 대차의 이동량의 다변수 시스템이다. 여기서 F는 시스템의 입력인 힘, x는 대차의 이동거리, 그리고 θ는 전자의 각도를 나타낸다.

\[
\sum F = M\ddot{x} + b\dot{x} + mx_0 = u \quad (1)
\]

\[
\sum M = mx_0 \cos \theta - my_0 \sin \theta = mg \sin \theta \quad (2)
\]

실험을 위해 제작한 X-Y Rod Balancing System은 그림 2.에 나타나 있다. 이 시스템은 0.8×0.7의 크기로 LM100가이드를 이용하였으며, 그림과 같이 진도, 각도감지/위치 감지 펜더미터, 모터 드라이버를 구

표 1. 제작한 Rod Balancing System

<table>
<thead>
<tr>
<th>파라미터</th>
<th>X축</th>
<th>Y축</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cart 질량(M)</td>
<td>0.96 kg</td>
<td>11 kg</td>
</tr>
<tr>
<td>전자 질량(m)</td>
<td>0.46 kg</td>
<td>0.8 kg</td>
</tr>
<tr>
<td>전자 길이(l)</td>
<td>0.47m</td>
<td>0.5m</td>
</tr>
<tr>
<td>총력 가속도 (g)</td>
<td>9.8m/sec^2</td>
<td>9.8m/sec^2</td>
</tr>
</tbody>
</table>

表 1. 시스템 파라미터
2.2 모터구동장치
모터를 제어하기 위하여 모터구동장치를 제작하였으며, 그림 3에 나타내었다. 이 구동장치는 제어기(PC)에서 연산을 수행할 계측부와 연결된 값을 PWM 변환 후 모터에 전달하는 PWM 변환부로 구성된다.

![그림 3. 제작한 모터구동장치](image)

2.2.1 계측부
각도 및 위치 계측부는 각각 1개 10mA와 10mA의 포트미터를 사용하였으며, 계측전압은 최대 ±10V까지 변화시킬 수 있다. 로터가 수직일 때 0V를 기준으로 좌우로 기울여진에 따라 전압이 변화하며 심사에서 ±15°일 때 ±4V로 제한하여 실험을 하였다. 사용자는 LM741의 중점을 이용한 값을 0V, 양 끝값에 위치할 때 ±10V로 설정하고 대차의 이동을 방지하기 위하여 9V일 때 PWM 출력전압을 끊어준 이탈방지 기능이 있다.

2.2.2 PWM 출력부
출력부의 입력전압은 ±10V이며, 입력 전압에 따라 Duty비를 조절하여 주파수가 3kHz의 PWM신호를 만드는 모터에 연결하였다. 로터의 회전을 할 수 있도록 전-역 판매회로를 구성하였으며, 전-역에서 모터의 단락을 방지하기 위하여 Off Margin(±0.1V)을 주었다.

2.2.3 I/O Board 사양
PC와 모터구동장치의 인터페이스를 위하여 사용된 I/O 보드(RG-103)는 IBM-PC의 PCI 슬롯에 장착하였다. 이 I/O 모드에서 X-Y축을 제어하는데는 각각 Analog Input 2ch과 Analog Output 1ch를 사용하였다.

3. GA를 이용한 PID 계수 설정

PID제어기로 구성된 단위제한제어시스템의 제어임을 이용하여 (3)식과 같다.

\[u(kT) = u(kT-1T) + \left(K_i + K_vT + \frac{K_p}{T} \right) e(kT) \\
- \left(K_r + \frac{2K_p}{T} \right) e(kT-1T) \\
+ \frac{K_p}{T} e(kT-2T) \quad (3) \]

먼저, 유전자의 알고리즘을 적용하여 PID계수 설정하기 위하여 \(K_p \), \(K_i \), \(K_v \)를 각각 n개의 2진수로 표현하여 계측을 생성하였다.

\[
\begin{array}{c|c|c|c}
1010110 & 1010110 & 1010110 & \cdots
\end{array}
\]

따라서 계측의 총 길이 \(3n \)이 되며, 각 계수는 탐색구간이 \(K_p \in [0, K_{ma}] \), \(K_i \in [0, K_{ma}] \), \(K_v \in [0, K_{ma}] \)으로 주어지며, 2진수로 표현되는 각 계수는 이 구간 내에서 사용하는 10진수의 값으로 변환된다.

하지만 최적화하기 위한 제어시스템의 성능한수는 다음 식(4)으로 계산되는 힙치틀턴체크선분(ITAAB, Integral of time-multiplied absolute value of error)을 이용한다.

\[\int_0^t e(t) |dt \]

그러나, 유전자가 알고리즘에서 적절한계수로서는 성능한수의 역수를 취함으로써 식(5)의 최대하한으로 변환한다.

\[\text{FitFun} = \frac{1}{\int_0^t |e(t)|dt} \]

그리고 선택규칙으로는 roulette 선택기법을 채용하며, 교차는 \(K_p \), \(K_i \), \(K_v \) 각 계수에 대하여 1점 교차(one-point crossover), 즉 각 계체에 대하여 3점에서 교차가 교차확률에 따라 발생하도록 한다.

본 논문은 전자물류 수직으로 제어하고 저자들의 높이 사이의 특성으로 설계 제어기(PI)는 X-Y축 각자에 대한 각도 및 위치를 동시에 제어하기 위한 PID 계수를 설정하여 시스템에 적용하였다.

4. 실험 및 결과 검토

실험은 GA를 이용하여 구체한 P. I. D계수 값을 PID 제어기에 적용하였다. GA를 설정하기 위한 각 변수는 1) 개체의 총길이 : 66 (22x3), 2) 계산소요시간의 세대수 : 200, 3) 개체집합의 크기(계수수) : 60, 4) 교차확률 : 0.25, 5) 돌연변이확률 : 0.01로 설정하였다. 또한, P. I. D계수의 탐색영역은 X축 \(K_p \in [0, 0.2] \), \(K_i \in [0, 0.3] \), \(K_v \in [0, 0.05] \), \(K_p \in [0, 0.2] \), \(K_i \in [0, 0.3] \), \(K_v \in [0, 0.05] \), \(K_p \in [0, 0.4] \), \(K_i \in [0, 2] \), \(K_v \in [0, 0.05] \)으로 설정하였다.

![그림 4. 진화에 따른 적합도 변화](image)

그림 4에서 최적의 P. I. D계수를 구하기 위한 진화에 따른 적합도의 변화특성을 나타내었으며, 2차 구체한 X-Y축 최적의 P. I. D계수는 표 2의 좌측값을 얻었다. 최적의계수의 추출은 같은 세대에서 적합도가 다른 세대보다 높다고 판단되는 세대의 계수를 설정하였다.

<table>
<thead>
<tr>
<th>표 2. X-Y축 PID 계수</th>
</tr>
</thead>
<tbody>
<tr>
<td>항</td>
</tr>
<tr>
<td>X축</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Y축</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

그림 5.에 실시간 제어를 위해 PC에서 상용 소프트웨어
어떤 SIMTool을 사용하여 구현한 PID 제어기 구성도를 나타내었다. 실험대상 시스템이 SIMO시스템이기 때문에 제어 가능한 입력에 대해 2개의 PID 제어기를 구성하여 작동하였다.

![그림 5. PID 제어기 구성도](image)

![그림 6. GA-based PID 제어기의 출력특성](image)

GA를 이용해 얻은 제어기 계수값을 적용하여 실험한 결과 청상상태오차가 비교적 높음을 갖는 것으로 나타나 반복실험을 통해 계수값을 조정하였다. 이와같이 정상상태 오차가 크게 나타나는 것은 실제 시스템과 시뮬레이션 시 적용한 모델, 즉, 대형의 마찰계수와 X축과 Y축 사이의 간격과 확과 균일성 등을 고려하지 않아 생기는 모델링오차로서 기인하는 것으로 보인다. 표 2의 각 계수의 무작위값 실험을 통해 조정된 결과.

![그림 7. Rod Balancing System의 외래 실험](image)

그림 7은Rod Balancing System의 외래 실험 실험 결과와 GA 기법이 PID 제어기 설계에 대한 효과적임을 확인할 수 있었다.

5. 결 론

본 논문에서는 대표적인 다변수 비선형시스템인 X-Y Rod Balancing System을 제어하기 위해 확률적 탐색기법인 유전자 알고리즘을 이용하였다. GA를 이용하여 구현한 P, I, D 계수를 초기값으로 이용하여 반복실험을 통해 제어기 계수값에 변화를 주어 실제 시스템인 Rod Balancing System에 적용하여 실험하였다. GA를 이용하여 얻은 초기 계수값을 이용하여 실험한 결과에서는 정상상태오차가 크게 나타나고 제어기 계수값을 조정하여 실험한 결과에서는 각도와 위치 모두 오차가 현저하게 줄어들음을 알 수 있었다. 결과적으로 GA를 이용하여 얻은 계수값과 조정된 계수값을 사용하였을 때 나타난 성능치는 GA 시뮬레이션시 사용한 모델과 실제 시스템의 모델링 오차에 기인한 것으로 보이며 앞으로 이러한 문제점을 해결하기 위한 연구가 계속되어야 할 것으로 사료된다.

[참고 문헌]

