Electromagnetic Effect of BPSCCO Superconductor

Sang Heon Lee
Department of Electronics Information Communication Engineering
Sun Moon University

Abstract - BiPbSrCaCuO계 초전도 소결체에 산화온을 첨가하여 자기 부양 효과를 나타나는 시료의 제작 조건을 조사하였다. 2%의 산화온이 첨가된 시편에서 자기 부양 효과가 가장 효과적으로 관측되었다. toroidal저축에서 관측되는 자기 부양 효과는 저 국 중첩부분에서만 발생하며, 저 국의 ring부분에서는 관측되지 않았다. 이 결과는 본 연구의 자기 부양 효과의 발생에는 저 국의 형상 및 저 국의 분포 형태와 밀접한 관련성이 있음을 의미한다. 자기 부양 효과에 관한 측정 결과로부터 자기 핵이 극소가 되는 장소에 초전도체가 놓이게 되면 초전도체는 반자성효과로 인하여 초전도체의 상하로부터 작용하는 자기력을 받게 된다. 또한 산화온을 첨가하지 않은 BiPbSrCaCuO계 초 전도체와 2%의 산화온을 첨가된 시편의 자기부양 효과를 조사한 결과 pinning center의 역할이 중요함을 알 수 있다.

1. 서론

1986년 Bednorz와 Muller에 의해 산 화물 고온 초전도체가 발견된 이래 세계전에서 심화물 고온 초전도체에 관한 수많은 연구가 수행되어 왔다. 현재까지 여러 종류 의 초전도체 제료가 제안되어 왔으나 특히 YBaCuO계 및 BiPbSrCaCuO계 초전도체는 액체질소 온도이상의 고온에서 초전도상태를 관측할 수 있으며 초전도 상태가 비교적 안정되어 실용화에 큰 주목을 받고 있다. 액체질소 온도이상의 고온에서 초전도상태를 관측할 수 있는 것은 다음과 같은 유용한 의미가 있다. 고온의 장치를 이용한 극저온에서 수행하는 금속체 초전도체와 비교하여 간단한 장치를 사용하면서 많은 실험을 수행할 수 있고, 이와 수반되는 물리현상을 용이하게 관측할 수 있다는 것은 산화물계 고온 초 전도체가 갖는 이점이다. 특히 초전도체는 외부로부터 인가되는 자세를 물질내부로부터 완전히 배제하는 현상인 완전 반자성 효과가 널리 알려져 있으며 이 현상을 Meissner 효과라고 한다. 한편 산화물 초전도체가 발 견된 이래 연구자석의 하부에 초전도체가 매달리는 흥미 있는 자기적 현상이 발견되었는데 이 실험을 Fishing 효과 또는 Magnetic Suspension 효과라고 하며, 본 연구에서는 이 실험을 자기부양효과라고 명명한다. 자기 부양효과는 P.N.Peter에 의해 발견되었으며[1], 이 현상은 명확히 산화물 초전도체를 응용하기 위한 연구에 가장 쉽게 응용할 수 있는 분야인 자기 폐어링과 플라이휠 에너지 저장장치와 같은 초전도체의 자기력을 응용한 분야에서 중요한 현상을 인식하고 있다. 따라서 자기부양효과의 메커니즘 및 자기적 특성, 저 국과 초 전도체간의 부상특성에 관한 많은 물리 연구가 수행되고 있다[2-3]. 본 연구에서는
toroidal형 영구자석에서 발생하는 BiPbSrCaCuO계 초진도체에서 pinning center의 필요성을 명확하게 조사하는 것을 연구의 목적으로 한다.

BiPbSrCaCuO계 초진도체에 pinning center를 도입하는 것을 목적으로 초진도체에 산화온(Ag2O)을 첨가하였다. 산화온은 초진도체와 반응하지 않으며 초진도체에 첨가되므로 시료의 초전도 특성이 저하되지 않는 물질로 여겨지고 있으므로, 본 연구의 목적인 pinning center의 도입이 있어서 적합한 재료로 생각된다.

2. 실험방법

시험은 99.9% 순도의 Bi2O3, PbO, SrCO3와 CuO 분말을 혼합과 하소의 공정을 포함하는 고상 반응법으로 제조하였다. 저울에서 정량한 분말을 알루미나 막자 사발에서 균일하게 혼합하였다. 재료의 조성은 고온 초전도상을 생성하기 용이한 것으로 알려진 Bi : Pb : Sr : Ca : Cu = 1.84 : 0.34 : 1.92 : 2.03 : 3.06을 선택하였다. 혼합된 분말은 840℃에서 24시간 하소하였다. 하소된 분말을 알루미나 막자 사발에서 분쇄한 후 1-5wt% 산화온(Ag2O)분말과 함께 혼합한 후 원판형 시험을 만들었다. 이 시험들은 830-850℃에서 산소분위기, O2 /Ar=1/13의 분위기에서 100시간 소각하였다. 완성된 시료는 반경 10 mm, 두께 0.1 cm의 흙색 원판형을 하고 있다.

3. 결과 및 고찰

본 연구에서 사용하고있는 자석은 ring형태의 toroidal자석이며 자석의 재질은 Nd-Fe-B이고, 자석의 세기는 0.1T이다. 다음으로 자기부양 효과의 메커니즘을 규명하기 위하여 자기부양 효과의 발생과 밀접하게 관련하고 있는 것으로 사료되는 toroidal 자석과 초진도체 사이에 작용하는 자기 반발력과 흡인력의 관계를 조사하였다. 이 실험을 위하여 그림1의 측정장치를 고안하였다. 이 장치는 초진도체에 외부로부터 자세를 인가하면서 시료에 작용하는 자기반발력과 자

그림 1. 자기력 측정장치

Fig. 1. Schematic diagram of the apparatus for the magnetic force measurement by seesaw.

기 부양 효과에 의한 자기흡인력을 동시에 측정할 수 있도록 제작되었다. 그림1의 실험장치는 시료에 외부로부터 자세가 인가됨에 따라 초진도시료가 반사성 효과로 인하여 자기적으로 반발될 경우 초진도 시료의 자기반발력이 seesaw를 통하여 전달되어 전자저울을 밑으로 누르게 된다. 한편 자기부양 효과에 의하여 초진도 시료와 자석 사이에서 자기 흡인력이 작용하게되면 자기 흡인력은 seesaw를 통하여 전달되어 전자저울을 밑으로 끌어올리는 힘으로 나타난다. 이 장치를 이용하여 초전도 시료와 toroidal 자석에서 발생하는 자기반발력과 자기흡인력의 변화를 측정하였다.

시료로서는 산화온을 2% 첨가한 BiPbSrCaCuO계 초진도체를 이용하였으며, 액체 질소로 시료를 냉각하면서 자석을 접근하였다. 이 결과를 그림2에 나타낸다.

그림에서 자석의 ring부분을 초전도 시료에 접근한 경우(△)에는 반사성 효과에 의한 자기 반발력이 관측되었으며, 자석과 초전도
체의 거리가 가까워질수록 자기 반발력은 증가하였다. 한편 자석의 중심부에 초전도 시료를 접근한 경우(O, 자석과 초전도 시료의 간격이 약 7mm 이상에서는 자기반발력이 BiPbSrCaCuO계 초전도 소결체에 산화온을 점가하여 자기 부양 효과를 나타나는 시료의 재작 조건을 조사하였다. 2%의 산화온이 점가된 시편에서 자기 부양 효과가 가장 효과적으로 관측되었다. toroidal 자석에서 관측되는 자기 부양 효과는 자석의 중심 부분에서만 발생하며, 자석의 ring 부분에서에는 관측되지 않았다. 이 결과는 본 연구의 자기 부양 효과의 발생에는 자석의 형상 및 자속의 분포 형태와 밀접한 관련성이 있음을 의미한다. 자기 부양 효과에 관한 측정 결과로부터 자속 밀도가 극소가 되는 장소에 초전도체가 놓이게 되면 초전도체는 반상성효과로 인하여 초전도체의 상하로부터 작용하는 자기력을 받게 된다. 또한 산화온을 점가하지 않은 BiPbSrCaCuO계 초전도체와 2%의 산화온이 점가된 시편의 자기부양 효과를 조사한 결과 pinning center의 역할이 중요함을 알 수 있다.

그림 2. 시료와 자석과의 거리에 대한 자기력 변화
Fig. 2. Changes in the magnetic force versus the distance between the superconducting sample and the magnet.

관측되었다. 그러나 거리가 약 3mm에서 7mm의 범위에서는 자기 반발력이 측정되지 않았으며 자기부양 효과에 의한 자기 흡인력만이 관측되었다. 또한 자석과 초전도 시료와의 거리가 약 3mm 이하가 되면 자기 반발력만이 발생하게 된다.

본 연구에서 관측되는 자기부양 효과는 toroidal 자석의 ring 부분에서는 발생하지 않으며, 자석의 중심 부분에서만 관측된다. 이 결과는 toroidal 자석의 자력선 분포가 반상성효과 및 자기부양효과에 밀접하게 관계하고 있음을 시사하고 있다.

3. 결론

참고문헌

