Knee Joint Control of New KAFO for Polio Patients Gait Improvement

소아마비 환자의 보행개선을 위한 새로운 장하지 보조기의 무릎관절 제어

  • 강성재 (연세대학교 대학원 의공학과) ;
  • 조강희 (충남대학교병원 재활의학과) ;
  • 김영호 (연세대학교 의공학과)
  • Published : 2002.05.01

Abstract

In the present study, an electro-mechanical KAFO (knee-ankle-foot orthosis) which satisfies both the stability in stance and the knee flexion in swing was developed and evacuated in eight polio patients. A knee joint control algorithm suitable for polio patients who are lack of the stability in pre-swing was also developed and various control systems and circuits were also designed. In addition, knee flexion angles and knee moments were measured and analyzed for polio patients who used the developed KAFO with the three-dimensional motion analysis system. Energy consumption was also evaluated for the developed KAFO by measuring the movement of the COG (center of gravity) during gait. From the present study, the designed foot switch system successfully determined the gait cycle of polio patients and controlled knee joint of the KAFO, resulting in the passive knee flexion or foot clearance during swing phase. From the three-dimensional gait analysis for polio patients, it was found that the controlled-knee gait with the developed electro-mechanical KAFO showed the knee flexion of 40$^{\circ}$∼45$^{\circ}$ at an appropriate time during swing. Vertical movements of COG in controlled-knee gait (gait with the developed electro-mechanical KAFO) were significantly smaller than those in looked knee gait(gait with the locked knee Joint). and correspondingly controlled-knee gait reduced approximately 40% less energy consumption during horizontal walking gait. More efficient gait patterns could be obtained when various rehabilitation training and therapeutic programs as well as the developed electro-mechanical KAFO were applied for polio patients.