인터넷 정보가전을 위한 임베디드 웹 서버

윤한경*, 임성락**
*호서대 백미디어학원 컴퓨터응용기술학과
**호서대학교 컴퓨터공학과
e-mail:yhk76@korea.com

Embedded Web Server for Internet Information Appliance

Han-Kyung Yun*, Seong-Rak Rim**
*Application of Computer Technology, Graduate School of Venture, Hoseo University
**Dept of Computer Engineering, Hoseo University

요 약
현재의 가전기기들은 인터넷과 결합하여 정보가전기기로 변해 가는 추세이다. 현재 시장인정 받지 못한
인터넷 정보가전기기들이 있지만 불필요한 기능이 많고 복잡하며 일반기기에 비해서 너무 비싼 것이
실이다. 이 논문에서 제시하고자 하는 모델은 필요하 하는 기능을 쉽게 사용할 수 있으며 저렴한 가
격에 임베디드 웹서버를 연결하여 인터넷 정보가전기기로 사용할 수 있는 모델을 제시한다.

1. 서론
인터넷 정보가전이란 가정내 구성된 홈네트워크를 이용하여 연결이 가능한 가전제품들로 에어컨,
세탁기, 보일러, 보안기기 등 모든 네트워크 정보기기/가전제품들을 통칭한다. 이러한 정보가전기기들을
웹서버를 통하여 네트워크로 연결함으로써 언제 어디서든지 원격으로 쉽게 제어 할 수 있게 되는데 이
러한 인터넷 정보가전의 개념도는 (그림 1)과 같다.

![그림 1] 인터넷 정보가전 개념도

현재 출시되어 있는 정보가전기기들은 사용 용도에 비하여 고가의 임베디드 시스템이 내장되어 있
다. 예를 들어 A사에서 선보인 냉장고는 인터넷을 통한 원격제어 이외에도 LCD화면을 내장하고 TV
수신까지도 가능하다고 하지만 효율성이 낮은 부분까지 탐
재되어 대중화되기 힘들 정도로 비싸다.
본 논문에서는 인터넷 정보가전의 필요한 기능을 원격으로 제어할 수 있는 임베디드 웹 서버의 모델
을 제시한다. 이를 위하여 저렴하고 확장성을 제공할 수 있는 소형의 H/W 보드와 웹 서버의 기능을
수행하는 S/W를 설계한다. 마지막으로 제시한 모델의 활용 가능성을 평가하기 위하여 기기의 감시 및
제어에 필요한 기 본적인 기능들을 실험한다.

2. H/W 보드 설계
본 논문에서 제시하는 임베디드 웹 서버는 기존의 제품은 물론 새로운 개발되는 제품도 지원 가능함
수 있게 다양한 인터페이스를 고려하였으며 다수의 기기를 유/무선으로 통합 제어하기 위하여 이더넷,
WiFi/Bluetooth, 다양한 제어용 디지털 I/ O, 야날로그 I/O, 무선모듈 접속용 포트를 지원한다. 본 논문에서는 (그
3. S/W 설계

S/W는 인터넷 정보가전을 위한 웹 서버의 기능을 수행하면서 기기는 제어 및 감시를 수행할 수 있도록 설계한다. 본 논문에서 제시한 임베디드 웹 서버 S/W의 기본적인 개념도는 (그림 3)와 같다.

(그림 3) S/W 개념도

(그림 3)에서 네트워크 인터페이스 구조는 PC, 휴대폰 혹은 PDA와 같은 인터넷 매체로부터의 웹 서비스 요청 메시지를 받아들이고 이를 요청에 대한 응답을 전달하는데 필요한 네트워크 프로토콜들을 지원하도록 한다. 반면 기기 인터페이스 구조는 인터넷을 통하여 기기에 통합된 사물 인터페이스에 대한 데이터 입출력 프로토콜을 제공하는 기기를 통합한다. 또한 웹서비스를 지원하기 위한 HTTP 요청을 처리 해주고, 유동 IP 사용시 자동으로 IP 설정을 할당받을 수 있게 해주는 DHCP 프로토콜을 포함한다.

3.1 제어의 호름

시스템이 시작되면 네트워크 설정을 불러오게 되며 이후 시리얼 통신 연결을 하면 H/W 베스트 후에 IP 주소, 서브넷 마스크 등의 네트워크 설정을 하게 되며 설정값을 변경할 필요가 없을 때는 설정 아님을 선택한다. 위 과정은 끝나면 HTTP 대화가 실행되어 요청이 들어오면 클라이언트 웹브 브라우저로부터의 해당하는 요청을 수행하거나 필요로 하는 웹 페이지 데이터를 과린 시스템의 기억공간에서 찾아내어 네트워크 인터페이스를 통해 전송한다.
임베디드 웹 서버 S/W의 기본적인 제어 효용도는 (그림 4)와 같다.

(그림 4) 제어의 효용도

3.2 패킷 처리 알고리즘
패킷 처리 알고리즘에서 패킷처리는 RTL8019AS의 RSR 레지스터를 검사하여 수신된 패킷이 있으면 정상적인 패킷인지 검사하여 블링 패킷은 버린다. 정상적으로 수신된 패킷은 타입 필드를 분석(분석1)하여 ARP, IP를 구분하여 처리하고, 이외의 패킷은 불필요함으로 패킷수신 대기상태로 돌아가는데 패킷 처리 알고리즘 효용도는 (그림 5)와 같다.

(그림 5) 패킷 처리 알고리즘 효용도

각 프로토콜의 패킷 처리 방법은 다음과 같다.
1. ARP : ARP 응답 요구시면 IP가 인지하면 ARP 응답 패킷을 송신한다.
2. IP : (분석1)에서 IP응 IP 헤더를 분석(분석
2)하여 상위층에 해당하는 프로토콜(TCP, ICMP)을 검사하고 해당하는 프로토콜 처리 무언으로 분리한다.
3. ICMP : ICMP 헤더를 검사하여 ICMP echo, PING 응답 요구인지 확인하고, IP가 일치할 경우 에코 응답 헤더와 수신한 데이터를 송신한다.
4. TCP : TCP 헤더의 포트 번호를 검사하여 웹 서버를 위한 HTTP 포트 80번의 경우는 IP가 일치하는지 검사하고, HTTP 요청에 의한 URL 류를 분석하여 해당하는 데이터를 전송한다.

3.3 HTTP 요청 처리
HTTP 요청은 사용자의 웹 브라우저로부터 요청된 웹 페이지 데이터를 전송하는 모듈로서 개략적인 제어의 효용도는 (그림 6)과 같다.

(그림 6) HTTP 요청시 효용도

클라이언트 웹 브라우저의 HTTP 요청에 대해 HTML 문서, 텍스트, 이미지, 자바 애플리刻苦한 전송하는데 적절적인 HTTP 요청에 대한 웹 페이지나 이미지, 자바 애플리kończył의 반환은 임베디드 웹 서버의 기억공간에 저장된 데이터를 파일 시스템을 이용하여 처리한다. HTTP 처리 부분에서 URL 류를 분석하여 필요로 하는 데이터를 요청하면 파일 시스템은 임베디드 웹 서버의 기억공간에 저장된 데이터를 검색하여 반환하게 된다. 기기 제어의 경우 CGI 기능을 하는 무언을 수행하여 해당 제어 기능을 처리하고 필요에 따라 수행 결과를 이용해 웹 페이지를 생성하여 클라이언트의 웹 브라우저에 전송한다.

4. 구현 및 실험
인터넷 정보가전에 적용하기 위해 필요한 기능을
제시한 임베디드 웹 서버 모델의 활용 가능성을 평가하기 위하여 기본적인 기능들을 실험하였다.

임베디드 웹 서버의 S/W는 GNU 공개 컴파일러인 AVR-GCC를 이용하여 작성하고 직접 통신 프로그램과 임베디드 웹 서버의 품질 품에 S/W를 적재하기 위해 사용되는 ISP 프로그램은 마이크로소프트사의 비주얼 스튜디오 6.0으로 작성하였다.

설계된 임베디드 웹 서버의 실험을 위한 환경으로는 제작된 H/W와 임베디드 웹 서버에 내장될 프로그램, PC에서 사용될 프로그램과 웹 페이지를 구성하기 위한 HTML 파일과 이미지 파일, 자바 애플리케이션 등이 필요하며 제시된 임베디드 웹 서버의 실험을 위해 필요한 기본적인 장치는 다음과 같다.

1. 임베디드 웹 서버에 전원 인가
2. PC와 ISP 포트를 통해 연결
3. 임베디드 웹 서버로 프로그램 전송
4. 임베디드 웹 서버의 IP가 환경 설정
5. 작성된 웹 페이지 파일 EEPROM에 저장
6. 10BaseT UTP 케이블 연결
7. 인터넷을 통해 웹브라우저로 접속.

본 논문에서 설계 구현된 임베디드 웹 서버의 점근 및 정상 동작을 확인하기 위한 기본 웹 페이지 출력 실험과 전동 제어 실험을 하였다.

[실험 1]에서는 MS 익스플로러 6.0으로 임베디드 웹 서버에 설정한 IP로 접속하여 EZ EEPROM에 저장된 기본 웹 페이지가 정상적으로 전송되어 (그림 7)과 같이 웹브라우저에 출력되어 나타나 있다. 이로서 임베디드 웹 서버가 정상적으로 동작하는 것을 확인하였으며 시각적 통신을 통한 모니터 기능으로도 정상적인 동작 상태를 확인할 수 있었다.

5. 결론
본 논문에서 제시된 임베디드 웹 서버는 H/W적인 범용성 및 유연성을 충족시키기 위해 무선모듈 접속용 포트를 내장하여 IrDA, 잉크포스와 같은 무선모듈을 접속하면 여러 기기와 간편한 무선 통신 가능하며 정보가전기기의 제어 및 감시를 위한 게이트웨이 기능을 수행할 수 있으며 인터넷 연결 기능 없는 정보기기의 인터넷 연결 기능으로도 사용할 수 있어 다양한 인터넷 정보가전에 유효할 수 있다. 또한 품질 품과 ISP 기능을 이용함으로써 확장성과 프로그램 개발의 유연성이 높아진다. 그러므로 인터넷을 이용하여 유/무선으로 각종 기기 통합 제어할 수 있는 장점과 시스템 설계의 최적화로 소형의 크기와 기존 제품보다 절연한 비용으로 제작할 수 있어 고가의 임베디드 제품들을 대체할 수 있다.

참고문헌