웹 기반 멀티미디어 교육 컨텐츠의 개발실태에 관한 연구

이현주*, 정천복**, 황선명***
대전대학교 컴퓨터공학과
e-mail: (hillee, chungboki)@aram.or.kr**, sunhwang@joju.ac.kr***

A Study on Design Method of Web Based Multimedia Education Contents

Hyeon-Joo Lee*, Cheon-Bok Jung**, Sun-Myung Hwang***
Dept of Computer Engineering, Daejeon University

요 약
웹 기반 컨텐츠는 사용자가 원하는 시간과 장소에서 학습자 스스로 수준별 학습이 가능하며, 농담적으로 학습에 참여할 수 있다는 장점으로 현재 많은 분야에서 다양한 방법으로 웹 컨텐츠를 개발하여 학습에 활용하고 있다. 본 논문에서는 웹 기반 멀티미디어 교육 컨텐츠 개발 전략으로 사용자의 이벤트에 반응하는 대화형 웹 교육 컨텐츠의 개발 과정을 설계하였다.

1 서론
최근 학교에서는 정보통신 활용 교육을 위한 하드웨어 환경 측, 멀티미디어 컴퓨터 시스템, 네트워크 구축 및 소프트웨어 서비스 실시와 같은 교육환경을 활발히 진행해 나가고 있으며, 이에 따른 소프트웨어와 웹 기반 컨텐츠 또한 다양하게 개발되고 있다. 특히 웹 기반 컨텐츠는 사용자가 원하는 시간과 장소에서 학습자 스스로 수준별 학습이 가능하며, 농담적으로 학습에 참여할 수 있다는 장점으로 현재 많은 분야에서 다양한 방법으로 웹 컨텐츠를 개발하여 학습에 활용하고 있다. 현재 웹기반 교육 컨텐츠는 대부분 이 하이퍼텍스트로 구성된 인터넷 개인 홈페이지가 가장 많고, 이외에 사전, 동영상, 이미지 자료를 중심으로 구성된 멀티미디어 동영상 강의 형태로 제공되고 있다. 동영상 강의는 학습자에게 더욱 학습에 동정감과 즐겁기를 부여하는 장점을 갖고 있는 반면에 강사의 일방적인 전달 방식에 의존하는 단점이 지니고 있다. 이 때문에 개별형 학습형태와 시뮬레이션형 학습형태도 있지만 본 논문에서는 웹기반 멀티미디어 교육 컨텐츠 개발 전략으로 사용자의 이벤트에 반응하는 대화형 웹 교육 컨텐츠의 개발과 과정을 설계하였다.

2. 웹 기반 교육 컨텐츠의 개발 동향
2-1. WBI(Web Based Instruction) [1]
WBI(Web-Based Instruction)는 웹을 수단으로 하여 교수-학습을 실현하는 일체의 교수법 또는 교육을 말한다. 웹의 구조는 지식의 습득 과정, 그리고 인지 심리학의 한 영역인 구성주의에서 보는 학습의 원리와 그 접근 방법이 주로 보유하다. 구성주의의 관점에서 학습은 농담적, 구성적, 유�icts적, 논리적 과정이며 근본적으로 학습자의 내재적 동기를 중요시한다. 또한 지식에 대한 개인의 인지적 작용과 개인이 속한 사회에서의 참여는 두 요소의 상호작용에 의해 지속적으로 변화, 수정, 보완을 통해 구성되어 가지고 있는 것이기 때문에 개인의 농담적인 조직 활동이 없다면 지식은 확립될 수 없는 것이라고 본다. 이런 점에서 학습은 제시된 정보에 대해 재생하는 것이 아니라 주어진 정보를 받아들이 새로운 의미로 재해부가하는 과정이라고 할 수 있다.

구성주의에 의한 이러한 학습관은 학습자 중심의 교수-학습으로 자연스럽게 귀착된다. 중전의 교사 중심, 지식 전달 주자의 교육은 정보화 시대에 일어나는 오늘날의 체제로 된 교수-학습이라고 할 수 없다. 이제는 학습자가 자신의 능력과 희망에 맞게 능동적으로 지식, 정보를 습득할 수 있어야 한다.

그런 점에서 웹은 그 어떤 매체보다도 이러한 변화에 가장 알맞은 교육의 수단이 될 수 있다. 웹 상의 지식과 정보는 주어진 것을 알 수 없을 정도로 무궁무진하며 그 형태도 학습자 수준을 받아 나가는 선형적 배포가 아니라 학습자의 임의적 판단에 의해 선택해 나가는 비선형적 방식을 택하고 있기 때문이다.
2-2. WBI 학습설계모델

1) 하이퍼미디어 모델(HDM)[2]

하이퍼미디어 모델은 체계적 수업모델과는 달리 인지적 구성이론에 근거하고 있다. 따라서 수업설계자의 목적과 의도대로 결과가 나타나는 것이 아니라 수업자가 다양한 목표성취를 이룰 수 있는 개방형 설계모델이라고 보여진다. 따라서 이 모델은 하이퍼미디어 모델의 방식으로 다차원적이고 고차원적이며 인지적인 수업에 적용 될 수 있다.

① 학습영역 정하기
② 학습영역 내에서 요소 구체화하기
③ 중요한 주제 및 관점 구체화
④ 주제를 나타내는 다중 경로 그리기
⑤ 요소에 대한 학습자 중심의 탐색체공
⑥ 학습자의 반성적인 사고 고무하기

2) 학습자 중심 모델

웹기반 수업의 설계에 있어 가장 강조되어야 할 점은 학습자 중심으로 수업을 설계하는 방식이다. 수업설계의 기반은 동기유발과 목표설정이다.
①교육의 중심은 학습자의 성장이다.
따라서 웹기반 수업을 설계함에 있어 학습자로 하여금 웹 상으로 하여금 '행동하는 작업'이 되고 있으며, '행동하는 동안 학습하는 시간'이 되도록 설계해야 한다.
②학습자의 다양성을 고려한 설계가 되어야 한다.
웹기반 수업 설계는 학습자의 반달의 차이, 문화적 차이, 성 차이 등을 고려한 수준에서 이루어져야 한다.
③학습자로 하여금 동기를 유발시킬 수 있어야 한다.
아무리 활발하게 설계된 수업이라 할지라도 학습자들의 강의 피로를 줄 수 없는 제한적 방식이라면 학습목표를 이루기 쉽지 않다. 따라서 모드에 따라 학습자들이 즐기면서 배우는 에듀테인먼트를 적용해 보는 것이 좋을 것이다.

2-3. WBI의 일반적 설계과정[3]

교수설계는 전통적 수업을 위한 자료와 마찬가지로 학습자, 학습자원, 학습내용에 대한 지식을 요구한다. 이에 담여져 경 우의 영역에 대한 지식과 인간기계의 상호작용에 대한 지식도 필요하다. WBI 모델은 학습자가 될 WBI에 대한 설계과정을 통해 설계를 수행할 수 있는 기회를 마련하였다. 이를 실천하면 WBI는 다음과 같은 10단계를 통해 설계될 수 있다.[3]

1) 요구와 목표 결정
이 단계에서는 개발 책임자가 설계자를 선발하게 된다. 선발된 설계자는 교과문건과 다중요 구체적 수업요부를 정하고 대상 집단을 확인하여 요구조건을 한다.
10) 평가, 수정 및 보완

이 단계에서 설계자는 학습자 목표가 내용과 일치하는지를 검토하여 이에 대한 중요도를 한다. 학습용 스프레셔가 대상 집단에 의해 테스트된 후에 설계자는 흥미를 평가하여 찾아야 한다. 위의 10단계를 거쳐 WBI를 설계하는데 있어 교수설계자는 교과문주의 프레젠테이션, 그래픽 디자인과 협력하여 두 가지의 중요한 역할을 수행해야 한다. 하나는 수업의 내용과 순서를 계획하고 조직함을 도우며, 또 하나는 산출된 WBI가 시각적으로 대상 집단의 교육적 요구와 일치하는지를 평가하는 것이다. 설계자의 역할을 정리해 보면, <표 2>와 같이 요약될 수 있다.

<table>
<thead>
<tr>
<th><표 2> WBI 설계 과정에 따른 활동</th>
<th>담당자</th>
<th>대표적 활동</th>
</tr>
</thead>
<tbody>
<tr>
<td>개발책임자 대상절단</td>
<td>프로젝트의 필요사항 확인</td>
<td>학습자의 학습목표 확인</td>
</tr>
<tr>
<td>교과전문가</td>
<td>사용자 동작 수집</td>
<td>관련 교사수료 수집</td>
</tr>
<tr>
<td>연구전문가</td>
<td>관련 교수자료의 분석</td>
<td>설계전문가 교과전문가 함께 학습의 내용을 구현하는 아이디어 수집</td>
</tr>
<tr>
<td>설계전문가 교과전문가</td>
<td>설계의 결과 구현</td>
<td>사용자 동작 수집</td>
</tr>
<tr>
<td>프로그래밍</td>
<td>프로그램으로 구현</td>
<td>학습자의 학습 필요 결정</td>
</tr>
<tr>
<td>시스템설계</td>
<td>설계의 결과 구현</td>
<td>사용자 동작 수집</td>
</tr>
<tr>
<td>프로그래밍</td>
<td>프로그램으로 구현</td>
<td>사용자 동작 수집</td>
</tr>
<tr>
<td>수업의 내용과 일치하는지 확인</td>
<td>사용자 동작 수집</td>
<td></td>
</tr>
<tr>
<td>수업의 내용과 일치하는지 확인</td>
<td>사용자 동작 수집</td>
<td></td>
</tr>
<tr>
<td>수업의 내용과 일치하는지 확인</td>
<td>사용자 동작 수집</td>
<td></td>
</tr>
</tbody>
</table>

3. 웹 기반 교육 컨텐츠의 개발절차모형

3-2. WBI의 개발절차모형의 구체적 예시

WBI 개발절차모형에 따라 웹 기반 교육 컨텐츠 제작 과정을 살펴보기로 한다. 현재 웹 기반 교육 컨텐츠는 하이퍼텍스트 형식의 홈페이지와 강의 동영상, GVA, Active Tutor와 같은 컨텐츠 제작품, Flash, Director와 같은 멀티미디어 제작 툴에 의해 제작되고 있다. 컨텐츠는 학습 목표 달성 과정에 따라 다양하게 제작되지만 학습자 중심 모델에 기반을 두고 cm를 학습자가 산업하는 작업이 되지 않고, 학습하는 동안 학습하는 시간이 되도록 이벤트를 적용시켜 학습자와 상호작용하는 구성이 <그림 2>과 같다.

| <그림 2> 대화형 웹 컨텐츠 구성안

다음으로 WBI 전체 개발절차 모형의 한 부분인 교 수설계 부분의 세부화된 모형을 보면 <그림 3>과 같다. 웹 애니메이션 제작 툴인 플래시 MX를 학습하는 웹 교육 컨텐츠를 개발하는 과정을 세부 모형에 초점을 두어 살펴보기로 한다.

| <그림 3> 교수설계모형

1) 강과내용 분석

설정된 강의의 컨텐츠 모델이 다양하지만 모든 교육내용의 목표를 동일하게 도달하여 주는 것이 좋기 때문에 강의 내용을 분석하여 체계적 방법으로 제작하도록 해야 한다.

2) 강좌원고(나라리오) 작성

웹 애니메이션 툴인 플래시 MX를 20강과 분량의
원고 내용으로 작성한다.
3) 교수재해 선정
 플래시 MX 프로그램 실행 화면을 800×600pixel 이미지 자료로 제공하여 중심 교수재해로 하여 음성 및 텍스트 자료로 동시에 활용 되도록 한다.
4) 멀티미디어 자료 수집
 강의 원고에 따라 진행되는 학습활성화에 이미지 파일과 강의 설명에 사용되는 사운드 파일, 강의에 사용된 프로그램 작업 파일을 준비한다.
5) 강좌원도화면 설계
 프로차트 및 화면 구성안과 세부 상호작용을 설계 한다.

6) 예제별 자료제작 및 프로그래밍
 대화형 웹 컨텐츠 제작에 많이 활용되고 있는 멀티미디어 제작 툴 프로그램에서 학습자와 상호작용을 위한 이벤트 처리에 대해 자체 내장 스크립트를 활용하여 사용자의 반응에 따라 제어하는 대화형 프로그램을 구현할 수 있다.
7) 시스템작동 및 퍼드백
 웹 기반 컨텐츠는 다양한 변화들이 존재한다. 네트워크에서 인터넷 서비스 속도 저하와 스크립트 오류 등 컨텐츠의 작동에 있어서 문제점을 확인한 후 반드시 퍼드백하며 확인하도록 한다.

4. 결론
 지금까지 웹 기반 멀티미디어의 교육 컨텐츠의 개발 동향에 대해 알아보고, 개발절차모형과 웹 컨텐츠의 상호작용 구성요소 및 구체적인 개발과정에 대해 알아보았다. 웹 기반 교육의 효과는 웹이라는 매체가 갖는 속성보다는 수업 설계의 적절성을 통해 결정된다. 웹 기반 교육 컨텐츠 설계의 적절성은 교육 내용이 추구하는 목표와 학습이론적 관점과의 연계성을 통해 판단되고 평가되어야 한다. 다시 말해 모든 상황에 적용되는 웹 기반 교육 컨텐츠의 설계 원칙은 존재하지 않으며 학습 환경에 따른 최적의 설계 전략이 존재함뿐이다. 단순한 지식의 습득을 위해 목표한 하이퍼링크로 구성된 학습 환경을 만들다가나 학습자의 실제 문제해결을 지원하기 위해서 웹 버전의 교육을 만드는 것은 모두 학습 목표와 수업 전략과의 연계가 결여된 사례라고 할 수 있다. 웹 기반 교육의 가장 큰 장점은 다양한 학습요약의 달성을 모두 지원해 줄 수 있는 기능을 가지고 있는 매우 융통적인 학습지원 도구로서 그 동안 학습자의 개별적 특성을 수용하지 못한다는 한계를 가진다. 대화형 웹 기반 교육 컨텐츠는 이에 대한 해결책을 제시해 주고 있다. 현재까지 개발된 웹 기반 교육 컨텐츠가 학습자의 모든 특성을 수용하고 모든 지식 영역에 적용시킬 수 있을 만큼 만족할 만한 것은 아니지만 앞으로 이에 대한 지속적인 연구가 필요하다.

참고문헌
[1] 권혁일, 웹 기반 수업의 효과성 증진 방안, 현대 인재개발원, 2000