피지 추론을 기반으로 한 컬러 영상에서의 감성 인식

대한전기학회 하계학술대회 논문집 2003.7.21-23

Fuzzy Inference-Based Emotion Recognition of Color Image

Keun-Ho Jeong · Jae-heung Oh · Young-Hoon Joo
School of Electronic & Information Eng., Kunsan National University.

Abstract - 본 논문에서는 컬러 영상을 이용하여 인간의 감성을 인식할 수 있는 방법을 제안한다. 먼저, 컬러 영상으로부터 피부색 추출방법을 이용하여 얼굴을 추출한다. 그 다음, 추출된 얼굴 영상으로부터 인간 얼굴의 특징 점(ね비, 눈, 코, 입)들을 추출하는 방법과 각 특징점 간의 구조적인 관계로 인간의 감성(기분, 능동, 숨음, 분노)을 인식하는 방법을 제안한다. 본 논문에서 제안한 방법은 피지 추론을 기반으로하여 인간의 감성을 인식한다. 마지막으로, 제안된 방법은 실험을 통해 그 응용 가능성을 확인한다.

1. 서론

피학기술의 발달로 인간의 생활과 사고 방식이 변하고 있으며, 완전 자동화되며, 일정이 손으로 기계조작을 해 주는 것이 아닌 인간과의 의사소통방법을 요구하고 있다. 이 시점에서 필요로 하게된 기술은 하나가 사용자의 감정정보를 위한 감정정보 처리기술이(1-3). 이 기술은 감정정보를 추출하는 사용자에 바로 반영하여 각종 표정이나 움직임, 동작 등에서 정보 추출을 통하여 적절한 행동을 취할 수 있는 인공지능의 산물로 인식되는데 그 목적을 두다. 인간은 다른 사람들과 대화를 하거나 자신의 감정을 전달하는 등의 일상생활에서 얼굴은 매우 중요한 요소로 사용된다. 현재, 환경변화에 민감한 인간 얼굴의 인식 방법과 표정변화에 따른 인간의 감정을 알아내는 연구가 활발히 진행되고 있다(1-10). 얼굴영역 추출을 위한 방법은 직접적 특징추출에 기반한방법과 형편장점에 기반한 방법, 얼굴의 감정정보를 이용한 방법, 시간정보를 이용한 방법 등이 있다(4). 또한, 얼굴 요소의 영역추출을 위한 방법들이 있는데 이것은 투영분석(projection analysis). 색상정보를 이용한 방법, 얼굴요소의 특성에 기반한 추출방법과 유전자 알고리즘을 이용한 방법 등으로 나눌 수 있다. 마지막으로 얼굴 영상으로부터 음성변화를 추출하는 방법들이 있다. 이 외에도 신경망, 유전자 알고리즘을 이용한 표현소인식 연구 방법들이 최근 진행되고 있다(4, 6-9).

본 논문에서는 피지 추론을 기반으로 한 인간의 감정식별 방식을 제안한다. 먼저, 컬러영상으로부터 피부색을 이용하여 얼굴영상을 얻는다. 그 다음, Eigenface를 사용하여 이미지를 고효율화한 고효율성으로부터 저차원공간으로의 변환하는 파생된 측정을 거친 후 사용할 특징벡터들의 추출을 위한 Eigenface의 가중치와 상관관계를 통해 얼굴영상을 정규화하며, 그 영역으로 추출된 영역을 이용한 Eigenface의 가중치와 상관관계를 통해 얼굴영상을 회색로 만든 후, 이 영역을 이용하여 최적화된 얼굴영역을 보여준다.

\[
H = \cos^{-1} \left(\frac{1}{2} \sqrt{\frac{1}{(R-G)+(G-B)}} \right)
\]

\[
S = 1 - \frac{3}{R+G+B} \min(R, G, B)
\]

\[
I = \frac{1}{3} (R+G+B)
\]

색상은 0~360°로 나타내며 천도과 영도는 0~100% 로 표현되어진다. 그림 1은 실험에서 사용된 HSI 컬러 모델 공간에서의 피부색 분포영역의 H의 범위를 나타낸다. 그림 2는 이 모델을 통하여 획득한 얼굴영역을 보여준다.
2.2 얼굴영역의 정규화

얼굴영역의 정규화를 사용한 Eigenface는 주요요소 분석을 기본으로 하는 얼굴인식기법이다 [6]. 고유벡터 등에 대한 공간 투영 방법이라 할 수 있는 Eigenface는 다음과 같은 일련의 과정을 거쳐 이루어진다. 우선 학습에 이어진 학습가 N개의 이미지(96×96)의 미리지 차원에 각 인원 수 반품(96×96)의 이미지로 N*M과 같이 표현된다. 각 스케이나영역을 N*M해서 각각의 이미지(γn, n=1,2,3,...,M)와 스키(4)과 같은 평균이미지(φ) 사 이의 차이량상(φn)을 추출함으로써 각각의 이미지가 가 지고 있는 기본적인 차이 이미지를 추출하게 된다. 차이량상(φn)에 기반한 공분산 행렬은 다음과 같다.

\[\phi = \frac{1}{M} \sum_{n=1}^{N} \gamma_n \]
\[C = \frac{1}{M} \sum_{n=1}^{N} \phi_n \phi_n^T = AA^T \]

여기서, A=[ϕ1,ϕ2,...,ϕM] 이 공분산 행렬에서 데이터의 분포가 확실한 M개의 수치(orthogonal)한 벡터인 고유벡터(eigenvector)와 고유값(eigenvalue)을 구 한다. 여기서, 고유값은 결과적으로 영상들의 변화를 가 지고 있는 영상을 특정화하여 정렬시키는데 사용된다. 추출된 고유벡터들은 영상의 차원으로 나타낸 공간을 Eigenface로 한다. 임의의 추출된 얼굴 영상(γ)을 Eigenface의 공간인 Eigenspace(ϕT)에 투영시키려 가중치 성분(ωk)을 식 (6)과 같이 구한다.

\[\omega_k = \phi_k^T (\gamma - \bar{\gamma}) \]
\[k = 1,2,3,...,M \]

여기서, 가중치는 Eigenface에 대한 기여도를 나타낸 값이다. 가중치는 이전 수치만큼의 벡터 데이터 (Q=x1, x2, ..., xM)로 이루어진다. 임의의 추출된 영상영역에 대한 가중치(Ω)와 모든 인원에 대한 가중 치 (ΩT)와의 차이를 추출하여 서로의 관계를 정도 (ε=||Q-Ω||)를 선언한다. 이와의 최소 값을 이용해 식을 하게 된다. 즉, Eigenspace학습 공간에서 입력 이미지가 Eigenface에 얼마나 많이 영업가 높은값을 벡터로 표현한 Weightvector들을 비교하여 그 차이가 작게 나타나서 가장 작은 값을 찾아내게 된다. 그 차이 값이 없거나 나타나서 가장 작다는 의미는 가장 영향력이 높다는 결과로써 커리 영상에서의 영업을 나타내게 됨을 의미하는 것이다. 그림 3은 정규화를 위한 Eigenface로 이며 그림 4는 Eigenface를 이용하여 90×90원형으로 정규화된 영상의 결과를 보여준다.

표 1. 특정범위 수신 방법

<table>
<thead>
<tr>
<th>표시 형식</th>
<th>A(x,y)</th>
<th>A(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>표시 형식</td>
<td>A(x,y)</td>
<td>A(x,y)</td>
</tr>
</tbody>
</table>

2.3 특정범위 추출

인간의 감정의 변화에 따라 눈, 눈, 코 또는 입의 위치나 크기, 색상 변화가 일어난다. 이런 변화로 감정 인식에 이용하기 위해 본 논문에서는 표의 중심 좌표 없음 기준으로 길이별로 대각선의 길이가 8개의 특징 벡터를 추출하는 방법을 제안한다. 그림 5은 본 논문에서 제안한 영역의 특징 벡터를 나타낸 영상이며 표 1은 8개의 특징 벡터를 선출하여 내는 식을 나타낸다. 본 논문에서 제안한 방법에 의해 선출된 특징 벡터는 감정 인식의 중요한 판단 자료가 된다.

2.4 감정 인식

본 논문에서는 감정인식 영상을 기준으로 하여 설정 영상들의 특징벡터 간의 차이 값(m)으로 상관성 크소 수 순으로 사용하여 값을 구한다. 그 입력공간에서의 입력 변수는 편차 근사 추정 방법 중 하나이면 mammadi의 min-max 방법을 쓴다. 그림 6은 본 논문에서 사용되어 진 소속함수를 나타낸다. 예를 들면 i=5일 때 특징벡터의 차이 값이 3일 경우 E5는 적합도가 0.2이고 E5는 0.7이며 E5는 0.0 값이 구해진다. 감정인식은 특징벡터 차이 값에 대한 각각의 소속함수 값을 가지고 있으며, 다른 기능에 대한 (기관, 높아, 슬픔, 분노) 구분과 사전 지식으로 120 개의 얼굴 영상을 조사함으로써 구성된다.
모든 영상에서, 헬리 shading을 통해 인간의 감상적인 인식을 이용한 방법을 제안하였다. 이는 특정 영상으로부터 피부색을 이용하여 일괄 긴장성을 추출하기 위해 RGB에서 HSI 공간 모델로 변환하여 일괄 영상을 감지하고 이 영역에서 Eigenface를 이용하여 정규화 하여 추출된 일괄 영상으로부터 얼굴의 특성 요소(근육,두,코,입)을 찾아내고 인간 감상 상태의 특성 벡터를 조사하기 위한 특성 벡터 건너뛰기 방법을 제시하였으며, 특정 벡터들간의 차이 값의 극적 정규화 전반부의 입력 값으로 하여 추론을 통해 감상상태(기쁨, 놀람, 슬픔, 분노)를 인식 하는 방법을 제안하였다. 마찬가지로, 본 연구에서 구축된 비관 시스템을 이용하여 직접 실험을 통해 제안한 방법의 정확성을 확인하였다.

(참고 문헌)

그림 6. 벤더럼 함수

그림 7. 놀람 인식을 위한 규칙

본 논문에서는, 헬리 영상으로 인간의 감상 상태를 인식하는 방법을 제안하였다. 회극적인 영상으로부터 피부색을 이용하여 일괄 영상성을 추출하기 위해 RGB에서 HSI 공간 모델로 변환하여 일괄 영상을 감지하고 이 영역에서 Eigenface를 이용하여 정규화 하여 추출된 일괄 영상으로부터 얼굴의 특정 요소(근육,두,코,입)을 찾아내고 인간 감상 상태의 특성 벡터를 조사하기 위한 특성 벡터 건너뛰기 방법을 제시하였으며, 특정 벡터들간의 차이 값의 극적 정규화 전반부의 입력 값으로 하여 추론을 통해 감상상태(기쁨, 놀람, 슬픔, 분노)를 인식 하는 방법을 제안하였다. 마찬가지로, 본 연구에서 구축된 비관 시스템을 이용하여 직접 실험을 통해 제안한 방법의 성능을 확인하였다.