효율적인 자바언어 학습을 위한 인터넷기반 자율학습시스템의 구현
김 동식* 이동열* 서삼준**
*순천향대학교 정보기술공학부 **연암대학교 전기전자공학부

An Internet-based Self-Learning Education System For Efficient Learning Process of Java Language
Lee, Dongyeop* Kim, Dongskil* Seo, Samjun**
*Division of Information Technology Engineering, Soonchunhyang University
**Department of Electrical and Electronic Engineering, Anyang University

Abstract
This paper presents an internet-based self-learning educational system which can be enhancing efficiency in the learning process of Java language. The proposed self-learning educational system is called Java Web Player(JWP), which is a Java application program and is executable through Java Web Start technologies.

In this paper, three important sequential learning processes: concept learning process, programming practice process and assessment process are integrated in the proposed JWP using Java Web Start technologies. This JWP enables the learners to achieve efficient and interesting self-learning since the learning process is designed to enhance the multimedia capabilities on the basis of educational technologies. Also, online voice presentation and its related texts together with moving images are synchronized for efficient language learning process. Furthermore, a simple/useful compiler is included in the JWP for providing language practice environment such as coding, editing, executing and debugging Java source files. Finally, repeated practice can make the learners to understand easily the key concepts of Java language. Simple multiple choices are given suddenly to the learners while they are studying through the JWP and the test results are displayed on the message box.

1. 서 론
지금까지 웹 프로그래밍 언어를 교육하는 기존의 학습 컨텐츠들은 살아보면 학습자로 하여금 혼전에서 단지 영상이 아니라 예제프로그램, 예제실습을 통해서는 별도의 복잡한 웹 프로그램 등을 설치하여 독립적으로 학습하도록 함으로써 학습의 연속성을 저해하는 구조로 되어 있어 학습효과를 극대화하는 것이 어렵다는 문제점이 가지고 있다.

이와 같은 문제점들을 극복하기 위해 본 논문에서는 웹 프로그래밍 언어를 배우고자 하는 일반적인 사람들이 선택하려고 흔히 쓰는 개념을, 예제 프로그램의 실습으로 학습자에게 적합한 방법을 제안하고자 하는 이론과 현실을 해결하기 위한 강화세계형 플랫폼을 구현하였다. JWP는 웹브라우저를 통해서 실제 환경에서 실행되는 자바 언어 자율학습시스템인 Java Web Player(JWP)를 구현하였다. JWP는 강의의 진행을 유도하기 위한 강화세계형 플랫폼이 구현되어 있고, 자바소스 코드를 해석할 수 있는 프로그램실습용 컴퓨팅 소프트웨어를 삽입하여 학습 상황도 평가를 위한 강화학습평가 플랫폼도 구현되어 있다.

제안된 JWP는 교수-학습 자료를 자바 애플리케이션 및 예제프로그램을 이용하여 구성한 새로운 접근방법의 자바 언어 자율학습시스템이며, 실제 웹에서 운용하는 경우 기존의 본연의 교육방식에 비해 매우 높은 교육효과를 기대할 수 있을 것으로 생각된다.

2. 자바언어 자율학습시스템의 설계 및 구성
본 논문에서 제안한 자바 언어 자율학습시스템인 JWP 프로그램은 자바 애플리케이션 프로그램이므로 일반 웹에서 실행할 수 없지만 Web Start 기술을 이용하여 웹을 통한 실행이 가능하다.

그림 1. Java Web Player의 실행과정

그림 1에 JWP 프로그램의 실행 과정을 도식화하였다. 실행과정을 개별적으로 간략하게 설명을 하면 먼저 웹서버에 JWP 프로그램을 올리고 JWP 프로그램 실행할 수 있도록 웹페이지를 제작한다. 웹 페이지에는 버튼이나 링크가 걸려있는 텍스트 문서가 필요하며, 이 링크들은 Java Web Start를 호출한다(그림 1의 1번 과정). 다음으로 호출된 Java Web Start는 해당 프로그램을 실행하기 위한 라이브러리를 웹서버로부터 다운로드 한다(그림 1의 2번 과정). 다운로드가 끝나면 Java Web Start는 JWP 프로그램을 실행한다(그림 1의 3번 과정). 이렇게 실행된 JWP 프로그램은 웹서버로부터 이미 한번 실행이 된 것임으로 다음에 이 프로그램을 실행하면 위의 로딩과정을 생략하고 애러에 대한 과정을 통해 프로그램을 업데이트 한 후 실행하고 업데이트 내용이 없다면 바로 프로그램을 실행한다.

2.1 JWP 프로그램의 시스템 구성
그림 2에 본 논문에서 제안한 JWP 프로그램의 전체 시스템 구성도를 도식화하였다. JWP 프로그램은 자율을 막고 웹 서버가 웹페이지와 함께 웹서버에 올려져 있다면 클라이언트는 웹브라우저를 통해 해당 웹페이지 접속한 JWP 프로그램을 막공한 버튼을 클릭함으로써 JWP가 클라이언트측에 다운받고 해당 프로그램을 실행하게 된다. 처음 JWP 프로그램을 실행하게 되면 단일별 강좌와 하부 강좌들로 실행하는 플랫폼을 각 단일별 소주제로 선택

-2540-
할 수 있고, 각 단원의 마지막에 있는 마무리 평가 프로그램을 선택할 수 있다. 또한, 선택된 단원의 소주제별로 설명되는 플레이어는 강좌를 수강하면서 문제를 롤 플로를 유도하는 다이어로그 장이 별도로 설명된다.

![그림 2. JVP 프로그램의 전체 시스템 구성](image)

2.2 강좌 실행 플레이어

그림 3은 JVP 프로그램을 실행하고 단원별 소주제 선택함 때 나타나는 선택 화면으로 슬라이드 메뉴와 강좌 실행 메뉴를 이용해 해당 내용에 관한 이미지와 음성을 통해 학습하도록 구성되어 있다.

![그림 3. 강좌 실행 플레이어의 구성](image)

그림 4는 강좌 실행 플레이어에서 구비된 각 도구들의 기능을 간략하게 도시하였다. 그림 4(a)는 강좌와 관련된 내용을 선택하는 도구로서 ①은 이전내용으로 가는 버튼이고 ②는 다음 내용으로 가는 버튼이다. ③은 현재 선택된 강좌의 내용을 정리하기 위한 버튼이다. ④는 현재 선택한 강좌의 내용에 나오는 예제 프로그램들로 작성해 놓은 코드를 설명용으로 보는 커뮤니티 설명 버튼이다. ⑤는 강좌선택을 좀 더 쉽게 할 수 있도록 해줄 수 있는 슬라이드 메뉴다. 그림 4(b)는 현재 선택된 강좌의 음성 내용을 보여주는 설명창이다. 그림 4(c)는 현재 선택된 강좌의 내용에 관한 이미지와 플랫폼 설명을 도시하였다. 이 플랫폼 설명에는 사용자 편의를 위해 강좌의 내용에 따라 이동할 수 있도록 하는 이동 메뉴가 들어 있으며, 또한 스크린(Skin) 메뉴가 있어 사용자가 3가지 유형으로 플레이어의 외관(GUI)에 효과를 줄 수 있도록 구성하였다.

![그림 4a. 강좌 컨트롤 메뉴](image)

2.3 강각에제 설립용 컴파일러

제작된 JVP 프로그램은 무엇보다 자바 언어를 흥미롭게 학습할 수 있도록 제공되었기 때문에 학습자는 특별한 준비 없이 해당 프로그램을 실행할 수 있는 장소에만 언제 어디서나 학습이 가능해진다. 그러나 실제 자바 언어를 학습하기 위해서는 소스코드를 탐색할 수 있는 컴파일러가 필요하기 때문에 본 논문에서는 탐색한 설계과정을 제시하기 위해 JVP 프로그램에 컴파일러를 삽입한다.

![그림 4c. 강좌내용 및 학습데이터](image)

그림 5는 JVP 설립 프로그램으로 컴파일러에 대한 각각의 기능을 설명해 놓았으며, 학습자는 구비된 몇 가지 메뉴를 이용하여 자신이 직접 작성한 소스코드를 자신의 PC에 저장하고 그 내용을 컴파일러에 결과를 확인해 본 수 있다. 그림 5에 서 제시된 컴파일러는 학습자가 작성한 프로그램 스크립트를 자신의 로컬 시스템에 저장해야 하기 때문에 결과를 통해 구동되는 컴파일러는 자바 언어에서 요구하는 보안체계에 적용된다. 따라서 본 연구에서 제시한 JVP 프로그램은 컴파일러가 해당 시스템의 사전을 사용하는데 무리가 없게 하기 위해서 Java Web Start를 사용하여 인증절차를 거쳐 실행할 수 있도록 하였다. 그림 6은 소스코드를 컴파일하는 과정을 나타낸 화면이다.

![그림 5. 강각에제 설립용 컴파일러 모형](image)

2.4 강각학습 평가 플레이어

제안된 JVP 프로그램은 학습자가 학습한 내용을 단편 별로 평가하기 위한 학습평가 플레이어를 구비하여 학습 성과를 측정할 수 있도록 하였다. 학습평가 플레이어의
특정은 학습자가 학습한 단원에서 중요한 개념들을 선별해서 문체화하였기 때문에 학습자는 그 문체를 통해 이해가 부족한 부분이 무엇인지 알 수 있다. 그림 7에 JWP 프로그램의 전체 화면 구성도 도시하였다.

그림 7. JWP 프로그램의 전체 화면 구성

3. 자바언어 자율학습시스템의 구현

제안된 차바 언어 자율학습시스템의 유용성을 입증하기 위해 자바 언어 프로그래밍 학습을 위한 JWP 셀프프로그램을 구현하여 학습이 진행되는 과정을 면밀하게 분석하고 고찰하였다. 그림 8은 학습자가 자바 언어에서 작성한 프로그래밍 서식을 제시한다. 이 서식은 학습자가 자바 언어를 사용하여 프로그램을 작성할 때 사용하는 서식으로, 이 서식은 자바 언어의 구문과 정의를 기반으로 작성한 서식을 도시하였다. 그림 9는 각각의 서식을 작성하고 실행하는 과정을 보여주며, 이 서식은 자바 언어를 사용하여 프로그램을 작성할 때 사용하는 서식으로, 이 서식은 자바 언어의 구문과 정의를 기반으로 작성한 서식을 도시하였다.

그림 8. 개념학습 실행화면
그림 9. 예제실험 유도화면

학습자가 JWP 프로그램을 이용하여 실제 프로그램을 제작할 수 있는 과정은 (1) 소스 코드 (2) 소스 저장 (3) 소스 컴파일 (4) Html 소스 저장 (5) 소스 실행동의 순서로 이루어지며 이 과정을 그림 10에 도시하였다.

그림 10a. 소스 코딩/저장
그림 10b. 소스 컴파일

본 논문에서는 기존의 프로그램 언어 교육용 컨텐츠들을 가지고 있는 문제점을 개선한 인터넷 기반 차바 언어 자율학습시스템인 JWP 에 개발된 컨텐츠를 테마화한 실습 방법서를 제시하였다. 제시된 JWP 프로그램의 몇 가지 특징에 대해서 간략하게 다음과 같다. 먼저 인터넷 환경에 있어 필요성 커뮤니티에 대한 관련 이론과 응용을 가이드하하여 학습 효과를 유발하였으며, 다음으로 학습 내용에 대한 삼중을 위해 볼드의 독립적 인 프로그램의 설계없이 JWP에 적용된 컴파일러를 이용하여 설계된 실습을 구현하여 학습의 연속성을 도모하였다. 마지막으로 실습공간의 흐름의 흐름과 각 단원별 마무리 학습테스트를 통해 자기 실천에 대한 학습 성취도 및 이해도 증진에 도움을 잊도록 하였다.

그림 10c. Html 소스저장
그림 10d. 소스 실행하기

4. 결론

본 논문에서는 기존의 프로그램 언어 교육용 컨텐츠들을 가지고 있는 문제점을 개선한 인터넷 기반 차바 언어 자율학습시스템인 JWP 에 개발된 컨텐츠를 테마화한 실습 방법서를 제시하였다. 제시된 JWP 프로그램의 몇 가지 특징에 대해서 간략하게 다음과 같다. 먼저 인터넷 환경에 있어 필요성 커뮤니티에 대한 관련 이론과 응용을 가이드하하여 학습 효과를 유발하였으며, 다음으로 학습 내용에 대한 삼중을 위해 볼드의 독립적 인 프로그램의 설계없이 JWP에 적용된 컴파일러를 이용하여 설계된 실습을 구현하여 학습의 연속성을 도모하였다. 마지막으로 실습공간의 흐름의 흐름과 각 단원별 마무리 학습테스트를 통해 자기 실천에 대한 학습 성취도 및 이해도 증진에 도움을 잊도록 하였다.

[참고 문헌]