XML embedded JPEG
2000을 이용한 Image Retrieval System

천홍영, 콘미라, 조동섭
이화여자대학교 과학기술대학원 컴퓨터학과

Image Retrieval System using XML embedded JPEG2000

Si-Young Chun, Mi-Ra Kwak, Dong-Sub Cho
Dept. of Computer Science and Engineering, Ewha Womans Univ.


1. 서론

협상에서 디지털 이미지의 활용이 크게 증가하였다. 따라서 이렇게 많은 이미지를 저장하거나 사용자가 원하는 이미지를 쉽게 손쉽게 찾아내는 것이 중요해 졌고 이것을 이미지 검색기술에 관한 많은 연구가 있었다.

yahoo, google, empass 등과 같은 웹 검색엔진에서도 이미지를 찾는 기능을 제공한다. 하지만 이런 이미지 검색은 이미지의 정보에 이미지가 있는 페이지 내의 텍스트 정보를 주로 사용하는데 너무 많은 양의 이미지가 검색되기도 하고 사용자가 원하는 이미지를 찾아내기 힘들기도 한다.

본 논문에서는 특히 가장 널리 쓰이고 있는 정지영상 압축의 표준인 JPEG 형식의 이미지 파일에 대해 다루면서 보다 정확한 이미지 검색을 위해 이미지에 대한 특정 정보를 사용하여 JPEG 내에 이미 지정된 형식의 특정 정보 뿐 아니라 사용자가 직접 지정하고 추출할 수 있는 이미지 정보를 사용하여 효율적이고 정확한 검색을 하고자 한다.


2. JPEG 관련 연구

2.1 기존 JPEG 파일구조
압축된 JPEG 파일의 구조는 크게 entropy-coded segments와 marker segments로 이루어진다. entropy-coded segments는 entropy-coded data를 marker segments는 해더 정보나 태그들을 그리고 압축을 해제하거나 디코딩하는데 필요한 여러 정보들을 담고 있다. marker segments는 항상 2byte 고정된 8비트 정의된 "marker"로 시작한다.

각 marker segment가 시작될 시점에 알려주는 marker들은 다음과 같이 정의되어 있다.

<table>
<thead>
<tr>
<th>종류</th>
<th>코드</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPn</td>
<td>X’FFE0‘n</td>
<td>Application segment</td>
</tr>
<tr>
<td>DHT</td>
<td>X’FFC4‘</td>
<td>Define Huffman Table(s)</td>
</tr>
<tr>
<td>DQT</td>
<td>X’FFDB‘</td>
<td>Define Quantization Table(s)</td>
</tr>
<tr>
<td>DRI</td>
<td>X’FFDD‘</td>
<td>Define Restart Interval</td>
</tr>
<tr>
<td>EOI</td>
<td>X’FFD9‘</td>
<td>End Of Image</td>
</tr>
<tr>
<td>SOFn</td>
<td>X’FFC0‘n</td>
<td>Start Of Frame</td>
</tr>
<tr>
<td>SOI</td>
<td>X’FFD8‘</td>
<td>Start Of Image</td>
</tr>
<tr>
<td>SOS</td>
<td>X’FFDA‘</td>
<td>Start Of Scan</td>
</tr>
</tbody>
</table>

2.2 JFIF 파일구조
JFIF는 JPEG File Interchange Format의 약자로 다양한 platform이나 application에서 JPEG bitstreams이 교환되도록 하기 위한 최소한의 포맷이다. JFIF는 표준 JPEG interchange 포맷과 거의 비슷하지만 한 가지 차이점은 SOI marker 다음에 APP0 marker가 있다는 것이다. 이 APP0 marker에는 JFIF APP0 marker, JFIF Extenstion APP0 marker, Application-specific information가 있다. 그 중 JFIF APP0 marker는 다른 APP0 marker와 구분하기 위해 identifier 값을 가지는데 이 값은 0으로 끝나는 16bit "JFIF"이면 JFIF APP0 marker임을 알 수 있다. 이것은 외부 JFIF APP0 marker segment는 JPEG stream에는 들어있지 않은 version number, X and Y pixel density, thumbnail과 같은 정보들을 제공한다.

다음 그림은 JFIF 파일 구조로 그림1과 비교해서 APP0이 추가되었음을 볼 수 있고 JFIF APP0의 내용을 자세히 보여주고 있다. 그러면서 JFIF APP0 외에 추가적인 APP0은 포함하고 있지 않다.
2.3 JPEG EXIF 파일구조

EXIF는 Exchangeable Image File format for digital still cameras를 뜻한다. 이는 디지털 카메라를 위한 세계 공통의 표준 규격이다. EXIF JPEG 파일에는 디지털 카메라 촬영 시에 정보가, 촬영일시, 서터속도, 조리개수치, 줌 배율, 플래시 사용여부 등의 이미지 정보들이 들어갈 수 있다.

EXIF JPEG의 기본 구조를 보면 ISO/IEC 10918-1에서 명시된 표준 JPEG 파일 구조에 Application Marker Segment(APPI)가 추가되었다. APPI1은 APPI marker, Exif identifier code, 그리고 attribute 정보들로 이루어져 있다. Attribute 정보는 파일 메타데이터 포함되어 있는 TIFF 구조와 최대 두개의 FID에 저장되어 있다.(0th IFD 1st IFD). The 0th IFD는 compressed image(primary image)와 관련된 정보를 가지고 있고 1st IFD에는 thumbnail image를 위한 정보가 저장되어 있다.

다음 그림은 JPEG EXIF 파일의 구조를 나타낸 것이다. JFIF의 APP0에 APPI tag에 APP1 marker가 추가되었음을 알 수 있다.

2.5 JPEG2000의 XML BOX

[그림 5] JP2 Header box의 내용

Optional

May appear in any order

Required

Bits Per Component box
Color Specification box
Palette box
Component Mapping box
Channel Definition box
Resolution box

3. 검색에 활용될 수 있는 이미지 특성

3.1 파일 포맷내의 정보

1. image size
2. file size
3. date
4. copyright
5. bit depth
6. RGB color
7. image resolution
8. comment

등과 같은 이미지 정보를 검색에 활용할 수 있을 것이다.

3.2 XML형식의 추가된 정보의 예

3.2.1 강성정보

핵심에서 음악파일을 찾을 때 신나는, 우울한, 절충한
할 때 등으로 카타고리로 나누어서 음악을 들을 수 있는
환경을 제공해 주는 하이트가 있다. 이미지 검색 시에도
이런 느낌 정보를 활용하여 신나는, 고요한, 혼란, 강인한
등의 강성적인 정보를 바탕으로 검색을 할 수 있도록
한 것이다. 이를 위해서는 이미지 사용자가 이미지에 대한
강성 정보를 제공하여 투명적인 결과를 얻을 수 있으며 이미지에
대한 느낌 정보가 생성될 수 있게 것이다.

3.2.2 기타

1. keyword: 이미지 검색 시에 키워드로 들어갈 단어들을
추가할 수 있을 것이다.
2. image type: 이미지인지 사진인지지를 나타내는 정보를
추가할 수 있을 것이다.

4. XML Embedded JPEG2000를 이용한 Image
Retrieval System

[그림6] XML Embedded JPEG2000를 이용한 Image

이미지 정보 항목 및 입력 화면에서 이미지에 추가될
정보를 정의하고 그에 대한 값을 넣는다. 그러나 XML
생성기에 의해 이 정보가 XML문서로 생성되고 이 생
성된 문서는 JPEG2000 파일 포맷의 XML BOX안에 들
어가게 된다. 이렇게 XML 형식의 정보가 삽입된 채로
이미지는 JPEG2000 DB에 저장되어져야 한다. 이렇게 되
면 다양한 이미지들의 DB에 사용자가 접근하여 이미지
조회 검색을 통해 원하는 이미지를 찾을 수 있게 된다.
이 때 이미지 데이터에 들어있는 이미지 정보 외에
XML 형식으로 들어간 정보를 조건 검색에 이용할 수 있게 된다.

5. 결론

본 연구에서는 효과적인 이미지의 추출을 위해서 이미지
에 대한 정보를 검색에 활용하도록 하였다. 이미지에 들
어있는 정보뿐 아니라 사용자가 이미지에 대한 정보
필드를 직접 정의하여 XML형식으로 데이터를 들어갈
수 있게 된다. 이를 위해 사용자는
이 자신의 목적에 따라 이미지에 다양한 정보를 삽입할
수 있게 되고 이를 검색에 활용하여 더 효과적인 조건
검색을 할 수 있도록 하였다.

이미지에 xml 정보가 삽입된 기술은 여러 가지에 응
용될 수 있을 것이다. 그 중 사람의 얼굴, 이미지에 대한
이름, 나이, 표현 등의 정보의 산업적, 사회적, 유행성,
정보의愠성 등의 상황별 정보를 입력할 수 있게 되어
이미지의 온라인 정보를 구성하는 데 도움이 될 것이다.

[참고 문헌]