자바 애플리켓을 이용한 웹 기반 디지털 논리회로 가상실험키트

김 동식* · 김기문* · 박상윤* · 서상준**
*순천향대학교 정보기술공학부 · **안양대학교 전기전자공학과

A Web-based Virtual Experiment Kit for Digital Logic Circuits Using Java Applets

Kim, Dong Sik* · Kim, Ki Moon* · Park, Sang Yun* · Seo, Sam Jun**
*Division of Information Technology Engineering, Soonchunhyang University
**Department of Electrical and Electronic Engineering, Anyang University

Abstract

In this paper, we developed an efficient virtual experiment kit with creative and interactive multimedia contents, which can be used to enhance the quality of education in the area of digital logic circuits. Since our virtual experiment kit is implemented to describe the on-campus laboratory, the learners can obtain similar experimental data through it. Also, our web-based virtual experiment kit is designed to enhance the efficiency of both the learners and the educators. The learners will be able to achieve high learning standard and the educators save time and labor.

The virtual experiment is performed according to the following procedure: (1) Circuit Composition on the Bread Board (2) Applying Input Voltage (3) Output Measurements (4) Checkout of Experiment Results. Furthermore, the circuit composition on the bread board and its corresponding online schematic diagram are displayed together on the virtual experiment kit for the learner’s convenience.

Finally, we have obtained several affirmative effects such as reducing the total experimental hours and the damage rate for experimental equipments and increasing learning efficiencies as well as faculty productivity.

1. 서 론

현재 사이버는 인터넷의 급속한 보급과 네트워크의 발전으로 인해 인터넷 기반 정보화 사회화되고 할 수 있을 정도로 인터넷은 사회생활의 중요한 요소가 되었다. 인터넷의 영향력이 커질 만큼 새로운 업무나 사회전반의 기술 등 그 범위가 확대됨에 따라, 더욱이 인터넷은 우리 주변에서 일어날 수 있는 모든 상황을 재현할 수 있는 새로운 가상공간으로 자리하게 되었다. 예를 들어 특정한 교육용 사례에 가입하거나 특정 개인 사이트에 문화화된 강좌를 보면서 해당 사이트에서 제공하는 교육을 받게 될 것이다. 그런데 교육용 전문사 예에서 제공하는 컨텐츠가 단순히 학습자들에 박스나 인터넷을 보유하면 저질한 강화자들이 대부분이며 학습자와 교수자의 역동성이 과학적이고 사고착용적인 학습만이 가능하다는 설정이다. 또한 실제적으로, 전자문헌 등에 관련된 강좌들 역시 실험실습의 형태가 아닌 문화화된 강좌로 추상적으로 구성되어 학습자 입장에서 해당 내용을 구체화하기 어려운 설정이다. 이런 문제들로 해결하기 위해 방법은 교과과정을 바꾸는 실험내용 그리고 실험과정 방법 등에 대해 전반적으로 개선하는 방법에 익혀도 흐름적이 없다고 해도 과언은 아닌 것이다. 그러나 국내대학이 처해 있는 실험실 환경의 엉망성은 부정할 수 없는 사실이며, 실험실습과정에 대한 교과과정의 개발도 미진한 형태이므로 효율적인 실험실습교육을 위한 보조 교육도구로서의 실험실습에 있어서 학습과 가미한 새로운 흐름의 디지털 컨텐츠의 개발이 매우 필요하다는 것을 견개발하였다.

따라서 본 논문에서는 효율적인 디지털 논리회로 실험/실습교육에 있어 실제 실험실에서 이루어지고 있는 디지털 논리회로 가상실험키트를 혈상에서 소프트웨어적으

2. 디지털 논리회로 가상실험키트

2.1 디지털 논리회로 가상실험키트 화면구성

![그림 1. 디지털 논리회로 가상실험키트](image)

2.2 가상실험키트의 세부구성요소

2.2.1 전원 인가부

학습자들이 그림 1의 화면 중앙에 보이는 브레드 보드에 필요한 디지털 논리회로의 전전환을 하여 해당 입력에 대한 출력을 측정하고자 하기 위해서, 먼저 가상실험키트의 전전환이 가상실림 카드로 동작할 수 있도록 POWER 버튼을 마우스로 클릭 한다. 그림 2에 전원인가 후 활성화된 화면을 도시하였다.

![그림 2. 전원인가 후 활성화된 화면](image)
그림 2. 전원이가 후 활성화된 화면
2.2.2 IC 소자 게이트 선택하기
전원을 인가하면 가상실험기트 축측 하단에 있는 IC 소자 중에서 어떤 것을 선택할 것인가를 결정해야 한다. 그림 3은 IC 소자가 위치한 영역에서 소자 중에서 하나를 선택하기 위해 학습자가 원하는 IC 소자에 마우스 커서를 가져다 놓으면 해당 위치에서 볼록 커서로 바뀌게 되어 마우스로 클릭하여 선택하기는 의미로 구현되어 있다.

그림 3(a). IC 소자 영역 그림 3(b). IC 소자의 선택

2.2.3 브레드 보드 상에 IC 소자 고정
학습자가 선택한 IC 소자를 브레드 보드에 고정시키기 위해서는 IC 소자 영역에서 자신이 원하는 IC 소자를 선택하여 클릭한 상태에서 드래그를 하게 되면 브레드 보드 영역에 게이트 소자가 위치한 영역이 표시되고, 에를 들어 학습자가 마우스로 7408 IC 소자를 선택하여 드래그 하면 그림 4와 같이 밀착적으로 된 영역이 브레드 보드 상에 표시되는데 그 위치에서 마우스를 놓으면 IC 소자가 브레드 보드에 위치하게 된다.

그림 4. IC 소자의 위치고정

2.2.4 IC 소자의 설명 프레임 보기
IC 게이트 소자는 결정적으로 접하는 학습자 입장에서는 그 소자가 어떤 역할을 하고 나서 내부의 배치도가 어떤 형태인지 등에 대해 잘 알기가 어렵다. 따라서 본 논문에서는 해당 IC 소자에 대한 상세한 설명이 수록된 프레임을 구현하여 학습자에게 제공함으로써 독자 전반에 걸친 이해를 잘 이해할 수 있도록 설계하였다.
그림 5에서 보는 것과 같이 IC 소자를 브레드 보드에 위치하게 되면 "설명하기" 버튼이 활성화 되는데 이 버튼을 마우스로 클릭하면 "Detail" 버튼이 생기게 된다. 이 "Detail" 버튼을 누르게 되면 학습자가 선택한 IC 소자의 자세한 설명 프레임이 확대되면 나타나게 된다.
그림 6과 같이 설명 프레임에서 누락된 소자의 셀 배치도, 진리표 그리고 진리표의 각 입력력에 대한 확인 학습자가 제공되어 IC 소자에 대한 여러 가지 기능에 대해 시각적으로 쉽게 학습할 수 있도록 설계하였다. 한편, 그림 6의 중앙부분에 위치한 "one click" 버튼은 한번 클릭할 때마다 입력소호가 이동하면서 출력소호가 위치에 나타나도록 하여 진리표에 제시된 입출력관계를 확인할 수 있다.

그림 5. IC 소자에 대한 설명 프레임

2.2.5 입력 간 받아와 회로 결선
IC 소자로 브레드 보드에 고정된 해당 IC 소자에 대한 설명 프레임을 확인하게 되면 회로결선이 이루어져야 한다. 그런데 회로결선을 브레드 보드 상에서 진행하게 되면 회로 소자 수가 증가함에 따라 선의 연결 상태가 정확히 관찰하지 못하기 때문에 이어져들지 않는지에 대해 확인하기가 어렵게 된다. 이 문제점을 해결하기 위해 IC 소자와 브레드 보드 상에서 결선한 상태를 그대로 가상실험기트의 온라인 멤핑 공간에 녹화되므로 실질적으로도 시립 수 있도록 구현하여 학습자의 편의를 도모하였다. 결선을 위해 IC 소자와 입력부 및 출력부의 회로결선이 필요한다면 결선하는 과정은 먼저 IC 소자가 브레드 보드 상에 위치한 후 "결선하기" 버튼을 누르면 선택할 수 있는 영역이 나타나게 되며, 다음으로 그 영역에 마우스 커서가 놓여지면 드래그로 마우스로 하여금 영역 중 브레드 하토 접선할 수 있도록 2단계로 설계되어 있다.
그림 7에 IC 소자, 입력부 그리고 출력부를 서로 결선하여 회로가 구성되는 과정을 화면으로 도시하였다. LED 갑의 변화가 출력부에 결선이 나타나도록 하였으며, 학습자와 같이 실제 실험에서 결선을 쉽게 할 수 있도록 하기 위해 가상실험기트에서 미리 선이 결선된 모습을 보여주어 실제 실험으로의 용이하게 진행되도록 하였다.

2.2.6 온라인 멤핑
회로가 브레드 보드 상에 결선되었다면 IC 소자의 연결이 정해졌으며 IC 소자에 대한 설명과 연결되는 정보를 바탕으로 입력소호의 연결이 이루어져, 이어지는 equilibrium이다. 따라서 브레드 보드 상에서 결선되는 회로를 가상실험기트에서 온라인으로 녹화되므로 실질적으로 모델 하여 학습자에게 제공된다면 실질의 접선은 효과적으로 확인할 수 있어 학습요소의 가구화를 이루게 된다. 그림 8에 브레드 보드 상에 녹화회의를 결선한 후 논리회로 실질이 가상실험기트의 온라인 멤핑 공간에 나타나는 과정을 도시하였다.

그림 6. IC 소자에 대한 설명 프레임

그림 7. 회로가 결선되는 과정을 나타낸 실행화면
IC 소자, 입력부 및 출력부를 결합하여 IC 소자와 결합되어지는 과정을 그림 9에 도시하였다. 이하의 과정은 모두 브레드 보도 결합과 동시에 논리로써 실험 결과는 그림 8과 같이 해석되어 학습자에게 결과적으로 전달되므로 학습자가 실험내용을 쉽게 이해할 수 있기 때문에 회로 출력이 예측한 결과와 다르게 출력되는 경우 브레드 보드 결합을 확인하는 대신 논리로써 실험결과를 확인함으로써 오류 발생을 매우 쉽게 이루어지게 된다.

그림 8. 온라인 텐션 과정

2.3 가상실험 키트의 프로그램 설계

본 논문에서 제안된 디지털 논리회로가상실험 키트는 그림 10에 나와 있는 바와 같이 실험키트 표시부, 마우스 이벤트 처리부, 결합 및 회로구성상태 확인부 그리고 결과 출력의 4개의 단계를 거쳐 프로그램으로 구현되었다.

그림 9. IC 소자의 결합과 온라인 텐션 과정 실행화면

2.4 디지털 논리회로가상실험키트 실행 예

본 논문에서는 전통적인 실험교육시스템의 문제점을 극복할 수 있는 가상장치로 가상실험 가능성을 수행할 수 있는 웹 기반 디지털 논리회로가상실험 키트를 개발하였다. 본 가상실험 키트는 학습자들이 실제 실험에 준하는 실험 환경을 미리 활용해 경험함으로서 그 자체로 실제 실험을 대체하거나 실제 실험의 원활도를 높이는 사전 준비과정을 활용할 수 있다. 특히 브레드 보드상에서도 이루어지는 논리회로 결합은 표준화된 논리회로 실험결과로 온라인으로 가상지역에서 시각적으로 전달함으로써 학습자가 실험내용을 쉽게 이해할 수 있음을 뿐만 아니라 실험 결과와 본론에서 예측한 결과와 다르게 출력되는 경우 복잡한 브레드 보드 결합을 확인하는 대신 표준화된 논리회로 실험결과를 확인함으로써 오류 발생을 매우 쉽게 해결할 수 있다는 특징이 있다.

그림 10. 가상실험 키트의 프로그램 설계

그림 11. 전기산기 가상실험 실행 예

그림 12. RS 풀집합 가상실험 실행 예

그림 13. 동기식 카운터 가상실험 실행 예

3. 결 론

본 논문에서는 전통적인 실험교육시스템의 문제점을 극복할 수 있는 가상장치로 가상실험 가능성을 수행할 수 있는 웹 기반 디지털 논리회로가상실험 키트를 개발하였다. 본 가상실험 키트는 학습자들이 실제 실험에 준하는 실험 환경을 미리 활용해 경험함으로서 그 자체로 실제 실험을 대체하거나 실제 실험의 원활도를 높이는 사전 준비과정을 활용할 수 있다. 특히 브레드 보드상에서도 이루어지는 논리회로 결합은 표준화된 논리회로 실험결과로 온라인으로 가상지역에서 시각적으로 전달함으로써 학습자가 실험내용을 쉽게 이해할 수 있음을 뿐만 아니라 실험 결과와 본론에서 예측한 결과와 다르게 출력되는 경우 복잡한 브레드 보드 결합을 확인하는 대신 표준화된 논리회로 실험결과를 확인함으로써 오류 발생을 매우 쉽게 해결할 수 있다는 특징이 있다.

[참고 문헌]