PZT 박막에서의 Pb$_2$Ru$_2$O$_{7-x}$ 전도성 계면층의 영향
(Effect of Pb$_2$Ru$_2$O$_{7-x}$ conductive interfacial layer in PZT thin films)

충남대학교 촌성남, 성낙진, 윤순길
이노스텍 (주) 김승현

서론

강유체계 PZT (PbZr$_{0.35}$Ti$_{0.65}$O$_3$: lead zirconium titanate) 박막에 대한 연구는 꾸밀없이 계속되어 왔고 현재 많은 발전을 이끌었다. 하지만 PZT를 FeRAM에 사용 시 하부전극으로 Pt를 사용하게 되면 심각한 피로현상이 발생하게 되고 PZT 내의 PbO와 하부전극 Pt와의 반응으로 인해 PZT의 화학량을 맞추기 어려운 проблемы가 악화되는 문제점을 안고 있는 것이 현재 반도체 산업의 현실이다.

이 때문에 많은 학자들은 PZT에 있어서의 피로현상을 줄이기 위해 La$_{1-x}$Sr$_x$CoO$_3$ (LSCO), YBa$_2$Cu$_3$O$_{7-x}$ (YBCO), IrO$_2$ 및 RuO$_2$ 등의 전도성 산화물 전극을 PZT의 하부전극으로 사용하는 방안을 연구하여 그 결과 PZT의 피로현상을 억제시키기도 하였다. 하지만 이러한 전도성 산화물 전극을 하부전극으로 사용하더라도 해결해야할 문제는 여전히 남아 있다. 그것은 바로 P_{r}값의 감소와 E_{c}값의 증가이다.

이에 본 연구는 PZT와 Pt 사이에 새로운 형태의 전극을 삼입하여 이러한 문제를 해결하고자 한다.

실험방법

Pb$_2$Ru$_2$O$_{7-x}$(PRO) 박막의 증착은 r.f magnetron sputtering법을 이용하였다. PRO 박막은 Pt/TiO$_2$/SiO$_2$/Si 기판위에 Pb pellets과 3 inch Ru target을 이용하여 실온에서 350~3500 A의 두께로 증착한 후 산소 분위기에서 400~600℃로 열처리를 하였다.

PbZr$_{0.35}$Ti$_{0.65}$O$_3$ 박막의 증착은 chemical solution deposition법을 이용하였다. 300℃에서 5min baking하였고 550℃에서 30min 최종 열처리를 하였다. PZT 박막의 두께는 1350 A로 하였다.

PRO 박막과 PZT 박막의 물리적 특성의 평가는 XRD patterns, SEM images, AFM images, 전기비저항성의 측정을 통해 이루어졌으며 PZT 박막의 전기적 특성의 평가는 RT 66A ferroelectric tester를 이용하여 P-E hysteresis, retention 특성 등의 평가로 이루어졌다.

실험결과

PRO 박막의 물리적 특성 평가 결과 PRO 박막의 열적안정성을 확인하였으며 PZT 박막의 전기적 특성 평가결과 PRO 박막을 사용하지 않은 PZT 박막과 35 nm의 PRO 박막을 상·하부 전극으로 사용한 PZT 박막의 경우 P_r값은 각각 52 μC/cm2과 75 μC/cm2로 약 1.5배의 차이를 나타내었으며 E_{c}값은 224 kV/cm와 217 kV/cm로 나타났다. 또한 100℃에서 10년 동안의 분극 감소율은 82%와 10%로 나타났다.