자전연소합성법(SHS)에 의한 FeB 분말의 제조
(Preparation of FeB powder by Self-Propagating
High Temperature Synthesis)

충남대학교 신창윤, 박영철, 이종현*, 원창환
* 금속융고신소재센터

1. 서 론
구 소련의 붕괴 이후 국적적인 전쟁의 가능성이 높아지고 있는 가운데 첨단전자장비와 신소재를 이용한 정밀전자장비들이 개발되고 있다. 기존 재래식무기와는 달리 적의 레이더망이나 통신시설을 마비시킬 수 있는 전자제품을 이용한 전자무기들이 개발되었으며, 제2차 세계대전에 사용된 후 많은 사람들에서 채용을 안겨준 원자폭탄은 그 성능이 계속 향상되고 있다. 이러한 전자제품과 원폭에 의한 방사능의 피해를 최소화하기 위해 다양한 전자제품 및 방사능 차폐제제들 이 개발되고 있다. 그 중 자성체로 사용되는 페라이트와 보론을 이용한 FeB분말이 방사능 차폐제로서 널리 사용되고 있다. 본 연구에서는 기존의 방법으로 합성이 어려운 고순도 FeB분말 은 시료의 발열반응을 이용하여 물질을 형성하는 방법인 자전연소 고온 합성법(SHS법)을 이용해 합성하였다. 합성에 필요한 다양한 반응인자를 고려해 최적의 반응조건을 연구하였다.

2. 실험방법
본 연구에서는 자전연소 고온 합성법을 이용해 고순도 FeB분말을 제조하였다. 합성에 사용된 출발시료는 B₂O₃(Junsei, showa), Mg(40~75μm), Fe(Shinuyo, Junsei, Duksan, Samchun) 그리고 Fe₃O₄(Shinyo) Fe₂O₃(Shinyo) 등을 사용하였다. 각 출발물질의 입자사이즈는 다양하게 변화시켜 반응인자로 고려하였으며, 반응제의 물질과 반응압력 그리고 반응속도 등을 변화시켜 실험하였다. 균일혼합시료는 자체제작한 SHS반응기를 통해 합성하였으며, 염산을 이용해 출시시 불순물을 제거한 후 수세와 건조를 통해 FeB분말을 얻었다. 합성분말은 XRD(x-ray diffractometer)분석을 통해 합성여부를 확인하였으며, 입상과 입자사이즈는 SEM(Scanning Electron Microscope)을 이용해 분석하였다.

3. 실험결과
XRD분석결과 출발물질의 입자크기와 반응물수 그리고 반응압력에 따라 단일상의 FeB 또는 FeB, Fe₂B의 혼합성을 얻었다. FeB, Fe₂B 혼합상의 경우 약 5-15%의 Fe₂B가 포함되어 있었다. 이러한 혼합상이 만들어지는 이유는 Fe₂B가 FeB에 비해 저온 안정성이기 때문에 고온형성 된 FeB가 낭자과정에서 Fe₂B로 상변태하는 것으로 생각된다. 또한 환호추의 경우 Fe₂O₃보다 Fe₃O₄를 사용할 때 더 좋은 반응성을 얻을 수 있다. SEM분석결과 1μm이하의 균일한 입도분포 를 얻었다.