The dependence of porosity and crystallinity on photoluminescence properties of Er doped \(\text{Al}_2\text{O}_3/\text{SiO}_2 \) films prepared by sol-gel method

권정호, 김재호, 석상일, 정동훈
한국화학연구원, *원광대학교

(kjonoon@kRICT.re.kr)

Optical amplifiers have been used to compensate the losses in the optical signal transmission and processing. Today, there has been increasing demand for the very low cost optical amplifier. Sol-gel offers considerable potential both low cost manufacture, and for great flexibility in materials composition and structure. In addition, the sol-gel process is a very attractive method for producing porous materials with controlled structure. In this work, we present the photoluminescence properties of Er doped \(\text{Al}_2\text{O}_3/\text{SiO}_2 \) films. Erbium doped alumina nano sol was prepared by \(\text{Al(NO}_3\text{)}_3 \cdot 9\text{H}_2\text{O} \) and \(\text{Er(NO}_3\text{)}_3 \cdot 5\text{H}_2\text{O} \) through hydrolysis and peptization, and then GPS (3-Glycidoxypropyltrimethoxysilane) was added into Er doped alumina nano sol for organic–inorganic hybridization. Er doped \(\text{Al}_2\text{O}_3/\text{SiO}_2 \) film was obtained by spin coating, dip coating and thermal treatment from 300°C ~ 1200°C, and there were crack-free after thermal treatment. The thickness of film was measured SEM, and the porosity of film was characterized by BET and TGA. The crystal phase of Er doped \(\text{Al}_2\text{O}_3/\text{SiO}_2 \) were determined by XRD. Finally, the photoluminescence properties of Er doped \(\text{Al}_2\text{O}_3/\text{SiO}_2 \) films will be discuss with the consideration of porosity and crystallinity.