Study On the Robustness Of Four Different Face Authentication Methods
Under Illumination Changes

Abstract

This paper focuses on the study of the robustness of face authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as follows: Principal Component Analysis, Gaussian Mixture Models, 1-Dimensional Hidden Markov Models, 2-Dimensional Hidden Markov Models. Experiment results involving an artificial illumination change to face images are compared with each others. Face feature vector extraction method based on the 2-Dimensional Discrete Cosine Transform is used. Experiments to evaluate the above four different face authentication methods are carried out on the Olivetti Research Laboratory (ORL) face database. For the pseudo 2D HMM, the best EER (Equal Error Rate) performance is observed.

I. 서론

얼굴인증 시스템은 인증 요청자의 얼굴 이미지 정보를 이용해 클라이언트의 ID(Identity)에 대한 인증여부를 판별한다. 이와는 대조적으로 식별시스템은 N명의 얼굴 데이터베이스로부터 식별요청자의 ID와 가장 유사한 얼굴의 ID를 찾아내는 방법이다. 얼굴이미지 정보에 기반한 과거의 연구는 인증시스템이 보안영역에서의 잠재적인 손실분야가 될 뿐 더 다양함에도 불구하고 식별시스템에 집중되었다. 얼굴인증 시스템은 얼굴의 특성벡터를 추출하는 부분과 인증 요청자가 실제 클라이언트인지 검정 클라이언트인지를 식별하는 인증판별부분으로 구성된다.

본 논문은 얼굴의 특성벡터 추출방법으로 2D DCT를 사용하고 클라이언트의 ID를 인증하는 방법으로 PCA, GMM, 1차원 HMM, Pseudo 2차원 HMM을 사용한다. 서로 다른 데 오는 얼굴인증방법을 사용한 조명변화실험을 통해 조명변화에 견인한 얼굴인증방법에 대해서 알아보고자 한다.

II. 얼굴 특성벡터추출

폭 W와 높이 H인 각각의 얼굴 이미지를 L×W 블록의 원도우를 중첩하여 나누어 볼 수 있다. 이에 연속한 원도우 블록의 중첩은 M만큼이다. 각각의 얼굴 이미지로부터 추출되는 블록의 수는 관측벡터 수 T와 같다. 본 논문에서 아래 그림 1의 원도우와 같은 얼굴이미지의 1차원 HMM의 각 파라미터 값은 H=112, W=92, L=10, M=8, T=52를 사용하였다. 관측벡터는 각 블록에서 3×13의 원도우로부터 추출한 2D DCT 계수를 사용하였다. 아래 그림 1의 오른쪽과 같은 Pseudo 2차원 HMM의 관측 시퀀스는 다음과 같은 방법을 사용하여 생성된다. P×L 원도우는 이미지의 원쪽에서 오른쪽으로, 위에서 아래방향으로 지그재그방향으로 스캔한다. 이웃한 원도우 사이의 중첩은 수평방
향으로 M 라인, 수직방향으로 Q 라인이다. 본 논문에 서 각 파라미터 값은 L=8, P=10을 사용한다.

그림 1. 1D & Pseudo 2D HMM 특징벡터 추출.

III. 얼굴인증

3.1 PCA 얼굴인증

PCA를 이용한 얼굴인증 방법은 다음과 같다. 학습 화 이미지 전체 집합에 대한 얼굴이미지 통분산 행렬 을 구하고 이 행렬에서 고유값과 고유벡터를 구한 다. 이 고유벡터에 의해 고유공간이 생성된다. 테스트 얼굴이미지에 대한 고유공간으로의 사영으로 기준치 벡터를 구한 다음 기준치 벡터간의 유클리언 (Euclidean) 거리를 측정하여 인증실험 한다[2]. 아래 그림 2는 학습화 이미지에 대한 가장 큰 고유차에 대 한 고유벡터 5개와 고유벡터 수가 50,100,125,150,175일 경우를 나타낸다.

그림 2. 고유벡터 (위: 1,2,3,4,5 아래:50,100,125,150,175).

3.2 GMM 얼굴인증

인증 요청자의 특정벡터 집합 \( X = \{ \mathbf{x}_i \}_{i=1}^{N_x} \) 가 주어지면 클라이언트에 대한 average log Likelihood는 다음 과 같다[1].

\[
L(X|\lambda_c) = \frac{1}{N_x} \sum_{i=1}^{N_x} \log p(\mathbf{x}_i|\lambda_c)
\]

\[
\lambda_c = \sum_{j=1}^{N_y} m_j N(\mathbf{x}_i; \mu_j, \Sigma_j)
\]

\[
\lambda = \{ m_j, \mu_j, \Sigma_j \}_{j=1}^{N_y}
\]

\( \lambda_c \)는 클라이언트 C에 대한 모델, \( N_y \)는 Mixture 수, \( m_j \)

\( \lambda \)는 Mixture j에 대한 가중치 계수를 나타낸다. 또한

\( N(\mathbf{x}_i; \mu_j, \Sigma_j) \)는 다변수 가우시안 함수를 나타낸다.

3.3 1차원 HMM 얼굴인증

Hidden Markov Models는 신호의 통계적인 특징을 표현하기 위해 사용하는 통계적인 모델 방법이다. 1차 원 HMM의 구성요소는 다음과 같다.

\( N, \) 모델에서 스테이트 수, \( S = \{ S_1, S_2, \ldots, S_N \} \)

\( M, \) 관측 심볼의 수, \( V = \{ v_1, v_2, \ldots, v_M \} \)

A. 상태전이 확률 메트릭스, \( A = (a_{ij}) \)

\[
a_{ij} = P(q_i = S_j | q_{i-1} = S_i), \quad 1 \leq i, j \leq N,
\]

\[0 \leq a_{ij} \leq 1, \text{and } \sum_{j=1}^{N} a_{ij} = 1, 1 \leq i \leq N\]

B. 관측 확률 메트릭스, \( B = (b_{ik}) \)

\[
b_{ik} = P(O_i = v_k | q_i = S_j), \quad 1 \leq j \leq N, 1 \leq k \leq M
\]

\( \Pi, \) 초기 상태 분포, \( \Pi = (\pi_i) \)

\[\pi_i = P(q_1 = S_i), 1 \leq i \leq N\]

1차원 HMM 모델 확률밀도함수(pdf)의 가장 일반적인 표현은 다음과 같다.

\[
b_i(O) = \sum_{k=1}^{M} \pi_k N(O; \mu_k, \Sigma_k), 1 \leq i \leq N
\]

얼굴이미지에 대해서 아래서 아래로 자연스럽게 중요한 얼굴영역(머리, 눈, 코, 입, 턱)이 나타난다. 이러한 각 각의 얼굴영역을 1차원 HMM에서의 스테이트에 해당되도록 할당할 수 있다[3]. 아래 그림 3의 원측은 1차원 HMM에 대한 얼굴모델의 스테이트 구성도를 나타낸다.

3.4 Pseudo 2차원 HMM 얼굴인증

1차원 HMM 각각의 스테이트에 다시 1차원 HMM \( \)을 삽입하면 2차원 HMM의 Pseudo 2차원 HMM으로 확장할 수 있다[4]. 이하 2차원 HMM은 슈퍼 스테이트와 상업 스테이트로 구성된다.

\( N_0, \) 슈퍼 스테이트 수, \( S_0 = \{ S_0 \}, 1 \leq i \leq N_0 \)

\( A_0, \) 슈퍼스테이트 상태전이 확률 메트릭스 \( A_0 = (a_{0ij}) \)

2037
3.5 얼굴인식

인증 요청자의 클라이언트에 대한 average log Likelihood $L(X, \lambda_C)$와 인터클라이언트에 대한 average log Likelihood $L(X, \lambda_r)$가 주어지면 인증에 대한 판별은 다음과 같다.

$$A(X) = L(X, \lambda_C) - L(X, \lambda_r)$$

인증 요청자에 대한 인증판별은 문제값 $t$에 대해 $A(X)$가 $t$ 이내에서 높아지면, $A(X) < t$ 일때 거절되여야 한다.

IV. 실험결과

4.1 얼굴 데이터베이스

실험은 ORL(Olivetti Research Ltd.) 데이터베이스[5] (개인당 10장의 이미지, 총 40명 400장 이미지)를 이용하여 실험하였다. 그림 4는 한명에 대해 학습과 단계와 테스트 단계에서 사용한 이미지를 10장을 나타낸다. 데이터베이스는 다른 성별(남성,여성), 얼굴표정, 해리스타일, 안경착용/미착용등의 다양한 얼굴이미지를 포함한다.

그림 4. 학습 이미지 & 테스트 이미지.

4.2 실험방법

HMM 모델 초기화 단계에서 모델 $\lambda = (A, B, \Pi)$는 1차원 HMM의 경우 5개의 상태수로 위치에서 아래로, Pseudo 2차원 HMM의 경우 5개의 스테이트와 각 스테이트의 확률 매트릭스 A에서 각 스테이트에 대해 35개의 상태 스테이트로 위에서 아래로, 좌에서 우로 균일하게 분할된다. 균일하게 분할된 각 스테이트의 관측벡터에 대한 모델 파라미터 초기값이 결정된다. 학습 단계에서 Baum-Welch 알고리즘을 사용하여 각 개인의 얼굴이미지에 대한 학습모델이 생성된다. 인증단계에서 Foward 알고리즘을 이용하여 주어진 얼굴이미지의 학습모델에 대한 관측확률 값을 계산한다.

 실험을 위한 변수 값으로 PCA의 경우 고유벡터 10개를 사용하여 실험이한다. GMM의 경우 DCT 원도우 크기는 8x8을 DCT 계수는 6을 Mixture수는 30을 사용한다. 1차원 HMM의 경우 DCT 원도우 크기는 10x92를 DCT 계수는 25를 스테이트 수를 2에서 6까지 Mixture 수를 1에서 10까지 변화시켜 가면서 실험이한다. 또한 Pseudo 2차원 HMM의 경우 DCT 원도우 크기는 10x8를 DCT 계수는 6을 스테이트수를 2에서 6까지 Mixture 수를 1에서 10까지 변화시키면서 실험이한다.

4.3 조명변화 실험
조명변화 실험을 위해 원래 얼굴이미지 $w(y,x)$의 원
쪽에서부터 오른쪽으로 아래 그림 5와 같이 인공적인
조명변화 델타($\delta$) 값을 0, 40, 60, 80으로 변화시켜가며 실
현한다. 조명변화 된 새로운 얼굴이미지 $v(y,x)$는 다음
과 같다.

$$v(y, x) = w(y, x) + mx + \delta$$

where $m = \frac{-\delta}{92/2}$

![그림 5. 조명변화 이미지(\(\delta = 0, 40, 60, 80\)).](image)

4.4 실험결과

얼굴인증을 위한 방법으로 PCA, GMM, 1D HMM, Pseudo 2D HMM을 사용한다. 인공적인 조명변화에
따른 얼굴인증 성능평가를 위한 정량화 방법으로
FA=FR임 때의 EER(Equal Error Rate)를 사용한다.

$$FA(\%) = \frac{I_A}{I_T} \times 100$$

$$FR(\%) = \frac{C_R}{C_T} \times 100$$

위의 식 FA(False Acceptance)에서 $I_A$는 잘못 인증
된 안티클라이언트의 수를 $I_T$는 안티클라이언트의 수
t을 나타낸다. FR(False Rejection)에서 $C_R$은 잘못 거
절된 클라이언트의 수를 $C_T$는 클라이언트의 수를 나
타낸다.

아래 그림 6은 네 가지 방법들로 구현된 얼굴인증 시
스템의 조명변화에 대한 EER성능을 나타낸다. 네 가
지 방법에 대한 조명변화($\delta = 0, 40, 60, 80$) 실험결
과를 비교하면 모든 경우 조명변화 값이 커질수록 성
능저하가 크게 발생한다. 성능 비교 결과 GMM 방법
이 가장 나쁜 성능을 나타낸다. 다음으로 조명변화가
없을 경우 1D HMM 방법이 PCA방법보다 좋은 성능을
나타내지만 조명변화 $\delta \geq 40$일 때는 반대로 PCA
방법이 더 좋은 성능을 나타낸다. 마지막으로 Pseudo
2D HMM 방법이 가장 좋은 성능을 나타냈다.

![그림 6. 조명변화(\(\delta=0,40,60,80\))에 대한 EER(\%).](image)

V. 결론

본 논문에서는 얼굴인증을 위한 방법으로 PCA,
GMM, 1D HMM, Pseudo 2D HMM을 사용한다. 본
논문은 여러 가지 얼굴인증 방법을 사용하고 이 방
법들 간의 조명변화실험에 대한 성능평가 비교를 목표
로 하고 있다. 데이터베이스는 ORL 얼굴이미지를 사
용하여 인증실험 하였다. 인증 실험결과 Pseudo 2차원
HMM 방법이 가장 우수한 성능을 나타냈다. 또한 실
제 환경에 견인한 얼굴인증 방법을 위해 인공적인 조
명변화 실험을 하였다. 그 후 본 논문에서 제안한 얼굴
인증 방법이외의 알고리즘을 이용한 얼굴인증과 다른
얼굴 데이터베이스에 대한 비교 연구가 필요하다.

참고문헌

Using Speech and Face Information”, PhD
Thesis, University Brisbane, August. 2002

Proceedings of International Conference on
Pattern Recognition, pp. 586–591, 1991

Markov Models”, PhD Thesis, Univeristy of
Cambridge, 1994

Approach for Face Detection and Recognition”,
PhD Thesis, University of Georgia Institute of
Technology, August 1999.