Simulation for FZPL Antenna on Mounted Dielectric Substrate

Tae Yong Kim*
*Dongseo University
E-mail: kimw2k@gdsu.dongseo.ac.kr

요 약

위성 TV 수신 시스템, 전파 망원경 및 원격감시 등에 응용할 수 있는 FZPL 안테나는 구조가 간단하고, 분해 및 조립이 간단하며 가격이 저렴한 장점이 있다. 이러한 렌즈형 안테나를 DAB/DMB용 수신기에 응용하기 위하여 TLM법을 적용하여 수치예산을 행하였다. FZPL 안테나는 유전기판에 마운트된 것으로 가정하였고, 시간응답 특성과 수신이득을 계산하였다. 계산결과 실제 설계커리에 따라 계산된 초점거리의 약 25% 높게 나타났으며, 수신이득은 18dB로 일사전력은 60여 배 증폭할 수 있는 것을 얻었다.

ABSTRACT

FZPL antenna have been applied for satellite TV receiver system, radio astronomical observation and so on, because of its flat nature and structural simplicity. Using TLM modeling, numerical simulation was performed for the FZPL antenna which can be applied for DAB/DMB receiver system. FZPL antenna mounted on dielectric substrate was investigated. As the results, the computed focal length was shorter than the designed one and the received gain was 18dB.

키워드

DAB/DMB, Focal length, focusing gain, FZPL, TLM modeling

1. 서 론

유한요소법(FEM), 경계요소법(BEM) 및 모멘트 법(MOM) 동은 도재 또는 유전체와 같은 구조물로부터 전기적 인산 문제 해석에 복합적으로 가용된다[1-5]. 이러한 방법들은 정성 파동문제에 적합하지만, 시각영역에서의 응답이 필요한 경우에는 많은 제약이 따른다. TLM(Transmission Line Matrix)법은 본질적으로 시간영역 해석 방법으로서 공간을 코일과 코테스로 구성되는 동등이론 전산 설계방식으로 변환시킨 뒤, 파동전파를 선로상에서 모델로 분할되는 방법보다 [6,7], 이것은 모멘트의 파동 전파과정을 하나의 이상적 모델로 옮겨 놓은 것이다. 또한 간단한 계산 알고리즘으로 시간영역 응답특성을 순서대로 계산할 수 있는 장점이 있고, 주파수 응답특성을 필요로 하는 경우에는 FFT를 이용하거나 계산과정 중에 DFT를 이용하여 계산종료와 함께 주파수 응답을 구할 수 있다.

FZPL(Fresnel Zone Plate Lens) 안테나는 위성 TV 수신 시스템, 전파 망원경 및 원격감시 등에 응용 가능하다[8]. FZPL은 호이젠스 플레네의 원리를 응용한 것으로, 기하학적으로 전파 차폐체(도체판)와 두파부를 독립적으로 나열한 간단 구조를 하고 있으며, 분해 및 조립이 간단하고 가격이 저렴한 장점을 가지고 있다. 본 논문에서는, FZPL 안테나를 DAB(Digital Audio Broadcasting) 및 DMB(Digital Multimeida Broadcasting) 수신기에 응용하기 위하여 TLM 법을 적용하여 및 가지 모델에 대하여 수치 시뮬
레인은 하였다. 관성 주파수 2.6GHz에 대하여 각 종 높이로부터 유전체에 마운트 되어 있는 것 으로 가정하였고, 유전기판이 없는 경우에 대한 계산 결과와 비교 검토하였다.

II. TLM 모델링

유전 기판에 마운트된 FZPL 안테나를 해석하기 위하여 그림 1에 나타낸 그림과 같이 SCN (Symmetric Condensed Node)로 알려져 있는 3차원 TLM 요소로 계산 공간을 분할 하였다. 이러한 기 본 요소는 3개의 좌표평면내에 12개의 포트를 가 진 선로를 동적으로 표현한 것이다. 또한 유전체 를 모델링하기 위하여 이러한 기본 요소에 6개의 stub을 추가하여 동작적으로 모델링하였다[6].

기본 요소에 입력의 필을 주입하면, 각 노드에 서 산란 필과 전기계가 형성되며, 다시 입력한 요소 에 입력 필로서 작용하게 된다. 이러한 산란 매 카니즘은 입사파 \(V' \)과 반사파 \(V' \)사이에 적절한 산란행렬 \(S \)에 의해 다음 식을 만족하게 된다.

\[
V' = [S] V
\]

(1)

여기에 산란행렬 \(S \)는 18x18로 주어질며, 구체적 인 유도과정은 문헌[6]에 제시되어 있다.

위에서 언급된 산란 알고리즘을 이용하여 공간 을 전파하는 필을 반복적으로 추적함으로서 파 동과정을 모의 추적할 수 있다. 그러나 TLM 공간 에서는 거리 \(dt \)를 전파하는 동안 시간 스텝 \(\Delta t \)의 2배의 시간이 소요되는 현상 특성을 가진다. 따라서 계산공간을 이산화하기 위한 요소 길이 \(\Delta l \)과 시간 스텝 \(\Delta t \)사이에는 자유공간에서의 전파속도 \(u_0 \)에 대해서 다음과 같은 안정 조건을 만족하여야 한다.

\[
\Delta l \leq \frac{\Delta t}{2u_0}
\]

(2)

이것은 TLM 공간에서는 실제 공간에서의 전파속 도 \(u_0 \)보다 2배 높게 전파하는 것을 의미한다.

III. 수치계산 모델과 조건

수치계산 모델은 그림 2에서 나타낸 것처럼, \(x-y \) 평면상에 FZPL을 배치하였다. 이때, 관성 주파 수 \(f \) 및 설계 조절지리 \(F \)에 대하여 각 종의 경계 위치는 다음 식으로 계산하였다[8,9].

\[
p_j = \sqrt{m_j F}
\]

(3)

여기서 \(p \)는 각 종 경계에 따른 인덱스를 의미하
IV. 수치 시뮬레이션

그림 3에 주어진 축대칭 모델에 대하여 계산을 수행하였다. DAB/DMB 수신 안테나에 응용하는 것을 고려하여 계계 주파수는 2.66GHz로 하였다. 그리고 FZPL의 투과 촌(Zone)의 수는 5개(\(j=10\)), 설계 초점거리(\(F=0.4m\))로 하였다. 계산공간은 158×158×140로 이산화하였고, 이산 간격 \(\Delta t\)은 식 (2)의 안정조건을 고려하여 0.5mm로 두었다. 전자 계가 정상상태에 도달할 수 있도록 하기 위하여 시간 반복 수는 1000회, 시간 스텝 \(\Delta t\)는 8.339164 (psec) 간격으로 계산을 수행하였다. 또한 FZPL이 마운트되는 유전기판에 대하여, 상대 유전율은 \(\varepsilon_r=2.68\), 두께는 10mm, 20mm의 경우에 대하여 계산을 수행하였다.

먼저 유전기판이 없는 FZPL 안테나에 대해서 계산을 수행하였다. 정상상태에 도달했을 때의 전계를 그림 4에 나타내었다. 그림에서 알 수 있듯이, 전력이 온 평면과가 중 경계면에서 회절(diffraction)과 반사(reflection)에 의해 흩어져 변화하는 것을 알 수 있다. 코 lee 단면에서는 회절한 입사파가 상호 간섭을 일으켜 전파 경로 및 방향이 움직으며 바뀌고 서로 중첩되어 코 lee 중심축에서 초점을 형성하는 것을 볼 수 있다.

다음으로, FZPL 안테나가 두께 10mm, 20mm의 유전체에 마운트되어 있는 경우에 대해서 동일 조건하에서 계산한 결과를 그림 5 및 6에 나타내었다. 그림 4에서의 값이 코 lee 후방에서 전자 계의 상호 간섭으로 인하여 코 lee 중심축에서 초점을 형성하는 것을 알 수 있다.

마지막으로, FZPL 안테나의 수신특성을 조사하기 위하여 코 lee 중심축상에서의 이동변화를 계산하였다. 수신이득(Focusing gain)의 계산은 입사파의 진폭을 \(E_0\)로 두었을 때, 코 lee측에서 계산된 전계의 진폭 \(E(P)\)에 대하여 다음 식으로 계산할 수 있다.

\[
G_r = 20 \log \left| \frac{E(P)}{E_0} \right|
\]
V. 결론

TLM법을 이용하여 관심 주파수 2.6GHz에 대하여 FZP 렌즈 안테나의 시간에 따른 산란특성과 수신이득 특성을 계산하였다. 시간 주파수 대응 전파 과정을 조사함으로서 FZPL 안테나가 렌즈형 안테나로 동작하는 것을 알 수 있었다. 또한 렌즈축상에서의 수신이득 변화를 조사함으로서 설계조건과 비교하여 계산된 조정거리는 빠르게 나타나는 것을 알 수 있었다. 이것은 TLM 공간에서의 전파속도가 설계보다 2배 느리게 전파하는 분산특성을 인하여 발생된 것으로 생각된다.

계산 과정에서 렌즈에 입사하는 평면파는 렌즈면에 수적으로 입사하는 것으로 가정하였다. 그러나 실제 수신환경은 고려할 때, 입자의 입사각에 대한 수신특성의 변화를 조사할 필요가 있으면 것으로 생각된다. 또한 계산된 조정거리가 설계조건과 상이한 위치에서 형성되는 원인 파악을 위해 TLM 공간에서의 분산특성을 정량적 해석할 필요가 있다.

참고 문헌