Vertical Filter을 적용한 자동차번호판 자동추출
시스템설계 및 구현

홍유기* · 김장형*
*제주대학교

Implementation of Auto-Detection System and License Plates for Vertical Filter

Yu Ki Hong* · Jang Hyung Kim
*Cheju National University
E-mail: ykhong@icic.sppo.go.kr

요 약

본 논문은 개인용 휴대장비인 디지털카메라들을 통한 차량의 앞/뒤 번호판을 자동인식하며 인식된 결과를 텍스트 형식으로 결과를 사용자에게 통보함을 희모, 입력된 차량의 정보를 부호화하고 통신망을 통하여 원격서버로 전달하고 원격서버는 복호화과정을 거쳐 전송된 텍스트 형태의 차량번호를 확인하여 차량에 대한 정보를 제공하는 시스템이다. 이는 급증하는 차량번호 및 차량통제, 도난차량검거, 수배차량추적등 많은 분야에 효과적으로 사용이 가능하며, 무선 및 도로교통에 많은 편의성과 효율성을 제고할 수 있다고 사료된다.

I. 서론

정보화사회에 있어서 우리의 기술발달은 하루가 다르게 변하는 것을 느낄 수가 있다. 이러한 변화에 있어서 컴퓨터 및 아동비와 PC의 기능을 통한 휴대용 디지털카메라들이 비즈니스의 기본배체로서 자리 잡고 통신망기술이 획기적으로 발전하여 휴대전화의 확산을 주도하는 측면에 역할을 한 것으로 전망된다. 이러한 점에 착안하여 차량번호와 차량을 이용한 범죄가 늘어가는 시점에서 개인화유단말기와 단말기에 장착된 디지털카메라로 차량을 추적하거나 음성 및 자하수차장에 설치된 CCTV에 녹화된 비밀에 이용된 차량번호를 디지털영상처리된 자료로 근거로 정확히 차량번호를 인식하여 차량소유자에 대한 자료를 정확히 판단할 수 있는 시스템을 개발하여 범죄예방과 범인검거에 자료를 제공하는 등 차량을 이용한 범죄에 효과적으로 이용할 수가 있다고 생각한다.

II. 문자인식 알고리즘

(1) Filed Effect 법

필기문자의 변형에 대해서 대처 가능한 방법으로 Field Effect 법이 널리 사용되고 있다. 이 법
(2) Vertical Filter 법

입력된 차량의 영상을 그 영상내에서 변환한 위치를 찾아내는 것을 차량이 앞면이나 후면에서 변환을 중심으로 촬영하여 얻어낸 영상을 보면 해당 정보를 채화하였을 때 변환의 세로축만 제외한다면 새로운 선이 거의 없는 것으로 나타난다. 결국 x 방향성분 즉 가로분만 제외한다면 변환의 두 새로운선을 구할 수 있다. *vertical Filter를 사용하여 새로운 선만을 추출하는 방법으로 순차적으로 분석하여 평균하려면 변환의 위치를 찾아 그 변환의 가로 길이와 세로 길이를 고려하여 규칙에 맞는 경우에 변환으로 인정한다.

수직성분만을 추출하는 *spatial filter를 이용하여 원래 이미지에서 수직 성분만을 구한다.

\[g(x, y) = M_1 \cdot f(x-1, y-1) + M_2 \cdot f(x, y) + M_3 \cdot f(x+1, y-1) + M_4 \cdot f(x, y-1) + M_5 \cdot f(x, y) + M_6 \cdot f(x+1, y+1) + M_7 \cdot f(x+1, y-1) + M_8 \cdot f(x+1, y) + M_9 \cdot f(x+1, y+1) \]

\[M = M_1 M_2 M_3 M_4 M_5 M_6 M_7 M_8 M_9 \]

III. 변환리관식과 문자 추출

1) 전처리(Preprocess)

변환금성터의 카메라를 통하여 입력받은 정지 영상에서 가장 중요한 포인트는 차량의 변환 영역을 검출하는 알고리즘이다. 기존에 연구되어 있는 방법은 명암을 이용한 정보를 변환한 영역에서 추출하는 방법과 영상값과 하프만 변환을 이용하였지만 주변 영역에 민감하여 환경적 영향을 받을 경우 인식이 빠르게 되므로 특정 추출영역은 변환영역 예외, 수직성분을 가지고 추출하는 방법이기 때문에 태우기에 잣립이 많은 영역이 있을 때 처리시간이 짧아 장시간 처리에는 적합하지가 없다. 이 논문에서는 고주파를 강조 필터를 사용하여 입력된 영상의 환경을 개선하고 수식 영역 각 분포변화와 차량변환 영역을 이용한 부분 영상 정립을 통하여 변환 영역 추출하였다.

이 변환 처리된 영상의 데이터표현은 순차적구조로 허대함가지 저장공간에 저장하는 것이 아니라 효과적이고 빠른 경계 처리를 위해 색인 인덱스 구조로 저장하여 변환 영역의 특징을 추출한다.

(2) 화질개선

후대용카메라로 촬영 입력된 영상은 640×480 크기의 해상도를 가지고 차량변환 영역을 정확한 추출하기 위해서 영상의 화질개선 작업이 필요하다. 고주파영역에서의 세부적인 음식선 부분만을 강조하기 위하여 고주파 강조필터를 사용하여 화질을 개선하였다.

\[g(x, y) = Af(x, y) - f_h(x, y) \]

\[g(x, y) = (A - 1)f(x, y) + (A - 1) \]

\[(f_h(x, y) = \text{고주파강조필터 영상} \text{, A: 상수}) \]

2) 영역 추출

변환영역내의 문자 위치를 알아내는 일을 하기 위해서는 변환영역의 규칙을 이용하여 부작용적 작업을 아주 쉽게 가능하고 변환영역을 정의하기 때문에 내부 문자나 숫자의 위치를 바로 찾아 수가 있다. 변환영역의 규칙에 비슷한 방법은 다음과 같다.

변환영역의 비율을 가지고 변환영역 내부 영역 구분을 1차적으로 할 수 있는 결과 각 비율이 정수값의 특징으로 변환하는 과정에서 문학 가 생길 수 있으므로 보정이 필요하다. 문자와 문학
자사이에 명암값들이 작게 되므로 보정비율은 구해진 좌표에서 작간의 pixel 정도를 변화시켜 명암값이 크게 작아지는 곳으로 하여 실시하게 된다. 이러한 형태로 구해진 변호판의 문자영역구분은 아래 그림과 같다.

이때 이 방향성 정보를 구성된 상태 그래프에 적용 시켜 문자를 인식한다. 분기점에서 방향은 8방향 코드를 사용하며, 이때 상태 그래프의 빈들 처리 시간을 위해 8비트 중 1비트만 Set 시켜 사용한다.

그림 10 변호판 내부의 문자영역 추출

이러한 변호판의 문자를 자동 인식하기 위해 변호판에 문자만을 구별하는 것이 필요하므로 위 그림에서 구해진 문자구분선을 기준으로 더 정확한 문자 구분과정이 필요하다. 이 과정은 기준구 분선을 한 라인씩 스캔하면서 문자의 시작과 끝 위치를 구하게 된다. 다음은 정밀한 문자 구분된 영상과 매모리에 저장된 각 문자를 이전화한 모습이다.

4) 문자 인식

소차 또는 문자의 데이터를 표현하려면 이미 계산시간과 효율적인 인식률을 위해 Field Effect 기법을 적용한다. 이는 민감한 반응에 대처하기 위해 사용되며 (그림 12)와 같이 8방향으로 검색하여 문자/숫자가 있는지 판단하고 이를 표준 편량의 유사성을 인식한다. 또한 위치점을 찾기 위해 특정 점의 방향성을 찾아 문자를 인식하였으며 (그림 12)와 같이 주변 픽셀들의 상태를 파악하여 방향성 을 결정하였다. 식 (6)은 8방향으로 Field Effect의 특정점 표상이며 식 (7)은 추출된 특정점에 대한 방향성을 나타낸다.

\[
F_i = \begin{cases}
0, & \text{특정점}(x, y) = 0 \\
1, & \text{특정점}(x, y) = 255
\end{cases} \quad \text{식(1)}
\]

\[
F(k) = \sum_{x=0}^{8} F_i \times x
\]

\[
q_{ij} = s_{Num}, P, PreN, NextN \quad \quad \text{식(2)}
\]

그림 13 상태그래프 구조

위 그림은 상태그래프의 구조를 보여준다. 이때 레벨 1에서 추적할 1+1노드는 중복을 허용함으로써 상태그래프를 효율적으로 구상하면 (그림 14)와 같이 인식된 결과가 표현되었다.
IV. 실험결과 및 고찰

(1) 하드웨어시스템

하드웨어시스템은 그림에 표시된 것과 같이 구성할 수 있으며 시스템사양은 표2에 정리된 사항을 참조한다.

![그림 15 하드웨어 구성](image)

표 2 시스템 사양

<table>
<thead>
<tr>
<th>시스템명</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>컴퓨터</td>
<td>Pentium III</td>
</tr>
<tr>
<td>컴퓨터</td>
<td>Redlake + MAD2</td>
</tr>
<tr>
<td>메모리</td>
<td>128 MB</td>
</tr>
<tr>
<td>메모리</td>
<td>256 Grey scale Bitmap File</td>
</tr>
</tbody>
</table>

(2) 소프트웨어

차량중류와 차량번호판인식을 위한 시스템의 소프트웨어는 윈도우98를 운영체제에서 Visual C++ 6.0을 사용하여 32 bit 프로그램을 제작하였다. 이 시스템에서 변환영역추출 및 변환인식 알고리즘은 변환영역추출, 각 문자 영역추출, 숫자 인식부분으로 나누어 각 문가 있으며, 3 x 3 Laplacian Vertical Filter가 이용되었으며 숫자인식을 위해서는 Similarity 법이 사용되었다.

(3) 고찰 및 결론

본 논문은 디지털카메라에서의 차량번호판 영상 을 입력받았으며 환경영은 320x240 픽셀크기의 그레이 영상의 영상을 가지고 실행을 하였다. 전체적 인 논문의 인식결과는 총100개의 영상을 가지고 실험한 결과는 표3과 같다.

![표 3: 전체 인식율 결과](image)

V. 결론

본 논문에서는 시각 데이터를 효율적으로 다루며 순차적인 색인 구조를 통하여 가변길이 레코드 단위의 저장구조로 표현하였다. 이러한 구조방법을 이용하여 차량 번호를 검출하여 이 결과를 통한 차량의 번호판인식과 그 적용을 vertical Filter 기법을 적용한 방법을 제시하였다.

참고 문헌