A Three-Winding Transformer Protective Relaying Algorithm Based on Flux Linkages Ratio

Chonbuk National University, NPT Center

Abstract - This paper proposes a tree-winding transformer protective relaying algorithm based on the ratio of increment of flux linkages (RIFL). The RIFL of the two windings is equal to the turns ratio for all operating conditions except an internal fault. For a single-phase transformer and three-phase transformer containing the wye-connected windings, the increments of flux linkages are calculated. For a three-phase transformer containing the delta-connected windings, the difference of the increments of flux linkages between the two phases are calculated using the line currents, because the winding currents are practically unavailable. Their ratios are compared with the turns ratio. The results of various tests show that the algorithm successfully discriminates internal faults from normal operation conditions such as magnetic inrush, overexcitation and external faults. The algorithm can not only detect internal winding faults, but reduce the operating time of a relay.

1. 서론

2선 변압기뿐만 아니라 3선 변압기 보호 계측기에도 내부사고와 내부사고가 아닌 것(여자돌림, 파열사, 외부사고)을 구분해야 하며, 변압기 보호에는 전류차동 방식이 주로 사용되고 있다. 하지만, 여자돌임과 파열사 및 차체붕괴 발생으로 전류차동 계측기는 오차를 줄 수 있으며, 이를 방지하기 위하여 고진사용하고 있다[1-3]. 이 방식들은 모든 고조와 심복을 사용하거나 [1]. 2조파를 이용하거나[2], 2조파와 5조파를 결합하여[3]의 경우 또는 복용하는 데, 내부사고시 계측기 동작이 지연되는 단점이 있다.

이러한 단점을 극복하기 위해서, 변압기 모델에 기초한 방식들이 제안되었다[4-6]. 이들은 시간 영역에서 동작하기 때문에 동작속도가 매우 빠른다. 하지만, [4]의 방식은 3선 변압기에 적용하는 경우, 덩다. 3선변압기의 순환 성분을 추정하는 데 따른 방법이 필요하다.

참고문헌 [5, 6]에서는 유기 전압이 여자돌림, 파열사시에는 전선비와 같은 반면에, 내부사고시에는 전선비와 같지 않은 측사를 이용하였다. 하지만, 이 방식들은 변형량을 근사하는 과정에서 수치 오차가 발생할 수 있다.

본 논문에서는 케이저속 섹션비가 내부사고시에는 원선비와 같지 않고, 여자돌임, 파열사시에는 원선비와 같은 원리를 사용하는 변압기 보호 방식에 대해서 기술한다. 참고문헌 [5,6]에서는 이론을 사용한 반면, 제한한 방식은 적분을 사용하기 때문에, 수치 오차가 적다. 여자돌림, 내부사고, 파열사, 외부사고 등의 경우에 제한 방식의 성능을 시험하였다.

2. 케이저속 섹션비를 이용한 3선 변압기 보호 알고리즘

2.1 3선 변압기

그림 1은 3선 변압기를 나타낸다. 내부사고가 없다면, 각 선간의 단자 전압은 다음과 같다.

\[v_1 = R_{i1} + L_{i1} \frac{d i_1}{dt} + \frac{d i_2}{dt} \]
\[v_2 = -R_{i2} - L_{i2} \frac{d i_1}{dt} + \frac{d i_2}{dt} \]
\[v_3 = -R_{i3} - L_{i3} \frac{d i_1}{dt} + \frac{d i_3}{dt} \]

여기서 \(i_1, i_2, i_3 \)는 각각 1차, 2차, 3차 케이저속이다.

식(1), (2), (3)은 다시 정리하면 다음과 같다.

\[\frac{d i_1}{dt} = v_1 - R_{i1} i_1 - L_{i1} \frac{d i_1}{dt} \]
\[\frac{d i_2}{dt} = v_2 + R_{i2} i_2 + L_{i2} \frac{d i_2}{dt} \]
\[\frac{d i_3}{dt} = v_3 + R_{i3} i_3 + L_{i3} \frac{d i_3}{dt} \]

\(R_{IFL2} = \frac{\Delta i_1}{\Delta i_3}, R_{IFL3} = \frac{\Delta i_1}{\Delta i_3} \)

(7)

\(R_{IFL1} = \frac{\Delta i_1}{\Delta i_2} \)

(8)

\(R_{IFL12} = \frac{\Delta i_1}{\Delta i_2}, R_{IFL13} = \frac{\Delta i_1}{\Delta i_3} \)

(9)

\(R_{IFL12} = \frac{\Delta i_1}{\Delta i_2} \) 및 \(R_{IFL13} = \frac{\Delta i_1}{\Delta i_3} \)의 경우에 각각 전선비 \(N_1/N_2 \), \(N_1/N_3 \)의 값에 대한 외부사고의 경우에 제한한다.
그렇게 \(\Delta \lambda_1, \Delta \lambda_2, \Delta \lambda_3 \)가 순서가 이므로 0을 지나는 순간에는 체료자극의 중분비가 변성되어 있지 않다. 따라서 본 논문에서는 (7)의 체료자극 중분비 대신, 식 (8)과 (9)의 디텍터를 사용하여 변압기를 보호하고자 한다. 즉, 식 (8)와 (9)로부터 계산한 디텍터의 값이 0이면 내부사고가 아니고, 0이 아닌면 내부사고로 판단한다. 디텍터의 값의 의미는 추정한 \(\Delta \lambda_1, \Delta \lambda_2, \Delta \lambda_3 \)의 차를 백분율로 표현한 것이다.

\[
\text{Detector12} = \frac{\Delta \lambda_1 - N_1}{N_2} \times 100(\%) \tag{8}
\]

\[
\text{Detector13} = \frac{\Delta \lambda_1 - N_1}{N_3} \times 100(\%) \tag{9}
\]

2.2 3권선 3상 Y-Y-\(\Delta \) 변압기

그림 2에 3권선 3상 Y-Y-\(\Delta \) 변압기를 나타내었다. 각 권선의 전압은 식 (10)~(18)로 나타낸다.

\[
v_{1A} = R_{1A}i_{1A} + L_{1A} \frac{di_{1A}}{dt} + \frac{di_{1A}}{dt} \tag{10}
\]

\[
v_{1B} = R_{1B}i_{1B} + L_{1B} \frac{di_{1B}}{dt} + \frac{di_{1B}}{dt} \tag{11}
\]

\[
v_{1C} = R_{1C}i_{1C} + L_{1C} \frac{di_{1C}}{dt} + \frac{di_{1C}}{dt} \tag{12}
\]

\[
v_{2A} = -R_{2A}i_{2A} - L_{2A} \frac{di_{2A}}{dt} - \frac{di_{2A}}{dt} \tag{13}
\]

\[
v_{2B} = -R_{2B}i_{2B} - L_{2B} \frac{di_{2B}}{dt} - \frac{di_{2B}}{dt} \tag{14}
\]

\[
v_{2C} = -R_{2C}i_{2C} - L_{2C} \frac{di_{2C}}{dt} - \frac{di_{2C}}{dt} \tag{15}
\]

\[
v_{3A} = R_{3A}i_{3A} + L_{3A} \frac{di_{3A}}{dt} + \frac{di_{3A}}{dt} \tag{16}
\]

\[
v_{3B} = R_{3B}i_{3B} + L_{3B} \frac{di_{3B}}{dt} + \frac{di_{3B}}{dt} \tag{17}
\]

\[
v_{3C} = R_{3C}i_{3C} + L_{3C} \frac{di_{3C}}{dt} + \frac{di_{3C}}{dt} \tag{18}
\]

Y 결선에 해당하는 체료자극의 종분 \(\Delta \lambda_{1A}, \Delta \lambda_{1B}, \Delta \lambda_{1C} \)과 \(\Delta \lambda_{2A}, \Delta \lambda_{2B}, \Delta \lambda_{2C} \)는 식 (10)~(15)로부터 직접 계산 가능하다.

\[
\text{그림 2 3권선 3상 Y-Y-\(\Delta \) 변압기}
\]

반면에, \(\Delta \) 결선에 해당하는 \(\Delta \lambda_{1AB}, \Delta \lambda_{1BC}, \Delta \lambda_{1CA} \)는 권선전류의 \(i_{1AB}, i_{1BC}, i_{1CA} \)를 측정하기 어렵기 때문에, 식 (16)~(18)로부터 직접 계산이 어렵다. 그러므로 \(i_{1AB}, i_{1BC}, i_{1CA} \)는 측정 가능하기 때문에 본 논문에서는 이를 이용하여 정해선전류와 권선전류간의 관계 식 (19)을 이용한다.

\[
i_{1CA} - i_{1AB} = i_{1CB} - i_{1BC} = i_{1AB} - i_{1BC} = i_{1CA} \tag{19}
\]

또한, 내부사고가 발생하지 않으면 식 (20)이 성립한다.

\[
R_{1AB} = R_{1BC} = R_{1CA} = R, L_{1AB} = L_{1BC} = L_{1CA} = L \tag{20}
\]

식 (18)에서 식 (16)을, 식 (16)에서 식 (17)을, 식 (17)에서 식 (18)을 각각 배치 정리하면, 다음과 같은 식을 얻을 수 있다.

\[
\frac{di_{1CA}}{dt} - \frac{di_{1AB}}{dt} = v_{1CA} - v_{1AB} - R_{1A}i_{1A} - L_{1A} \frac{di_{1A}}{dt} \tag{21}
\]

\[
\frac{di_{1AB}}{dt} - \frac{di_{1BC}}{dt} = v_{1AB} - v_{1BC} - R_{1B}i_{1B} - L_{1B} \frac{di_{1B}}{dt} \tag{22}
\]

\[
\frac{di_{1BC}}{dt} - \frac{di_{1CA}}{dt} = v_{1BC} - v_{1CA} - R_{1C}i_{1C} - L_{1C} \frac{di_{1C}}{dt} \tag{23}
\]

\(\Delta \lambda_{1AB}, \Delta \lambda_{1BC}, \Delta \lambda_{1CA} \)를 계산할 수 없지만, 그들의 차는 식 (21)~(23)을 통해서 계산 가능하다. 이와 대응하는 1차 권선의 식은 식 (10)~(12)로부터 다음과 같이 유도된다.

\[
\frac{di_{1CA}}{dt} - \frac{di_{1AB}}{dt} = v_{1CA} - v_{1AB} - R_{1C}i_{1C} - R_{1A}i_{1A} - L_{1C} \frac{di_{1C}}{dt} - L_{1A} \frac{di_{1A}}{dt} \tag{24}
\]

\[
\frac{di_{1AB}}{dt} - \frac{di_{1BC}}{dt} = v_{1AB} - v_{1BC} - R_{1B}i_{1B} - R_{1AB}i_{1AB} - L_{1B} \frac{di_{1B}}{dt} - L_{1AB} \frac{di_{1AB}}{dt} \tag{25}
\]

\[
\frac{di_{1BC}}{dt} - \frac{di_{1CA}}{dt} = v_{1BC} - v_{1CA} - R_{1C}i_{1C} - R_{1CB}i_{1CB} - L_{1C} \frac{di_{1C}}{dt} - L_{1CB} \frac{di_{1CB}}{dt} \tag{26}
\]

한편, Y-Y-\(\Delta \) 변압기의 경우에, 1차 권선과 2차 권선 사이에는 식 (27)이 1차 권선과 3차 권선의 사이에는 식 (28)이 성립한다.

\[
\frac{\Delta \lambda_{1A}}{\Delta \lambda_{1A}} = \frac{N_1}{N_2} \quad \frac{\Delta \lambda_{1B}}{\Delta \lambda_{1B}} = \frac{N_1}{N_3} \quad \frac{\Delta \lambda_{1C}}{\Delta \lambda_{1C}} = \frac{N_1}{N_3} \tag{27}
\]

\[
\frac{\Delta \lambda_{1AB}}{\Delta \lambda_{1AB}} = \frac{N_1}{N_3} \quad \frac{\Delta \lambda_{1BC}}{\Delta \lambda_{1BC}} = \frac{N_1}{N_3} \quad \frac{\Delta \lambda_{1CA}}{\Delta \lambda_{1CA}} = \frac{N_1}{N_3} \tag{28}
\]

\(\Delta \lambda_{1A}, \Delta \lambda_{1B}, \Delta \lambda_{1C}, \Delta \lambda_{1AB}, \Delta \lambda_{1BC}, \Delta \lambda_{1CA} \)는 계산이 가능하지만, \(\Delta \lambda_{1AB}, \Delta \lambda_{1BC}, \Delta \lambda_{1CA} \)는 계산 불가능하기 때문에, 식 (28)은 디텍터에 직접 적용이 불가능하다. 따라서, 본 논문에서는 식 (28) 대신에 식 (29)을 사용하여 디텍터를 구하였다. 식 (28), (29)는 필요충분 조건이다.

\[
\frac{\Delta \lambda_{1C} - \Delta \lambda_{1AB}}{\Delta \lambda_{1CA} - \Delta \lambda_{1BC}} = \frac{N_1}{N_3} \quad \frac{\Delta \lambda_{1C} - \Delta \lambda_{1AB}}{\Delta \lambda_{1CA} - \Delta \lambda_{1BC}} = \frac{N_1}{N_3} \tag{29}
\]
따라서, 디텍터는 다음과 같이 주어진다.

\[
\text{Detector 1} = \frac{\Delta I_{1A} - N_1}{\sqrt{2} V_{IC} \cdot T} \times 100(\%) \\
\text{Detector 2} = \frac{\Delta I_{1B} - N_1}{\sqrt{2} V_{IB} \cdot T} \times 100(\%) \\
\text{Detector 3} = \frac{\Delta I_{1C} - N_1}{\sqrt{2} V_{IC} \cdot T} \times 100(\%) \\
\text{Detector 4} = \frac{(\Delta I_{1C} - \Delta I_{1A}) - N_1}{\sqrt{2} V_{IC} \cdot T} \times 100(\%) \\
\text{Detector 5} = \frac{(\Delta I_{1B} - \Delta I_{1A}) - N_1}{\sqrt{2} V_{IB} \cdot T} \times 100(\%) \\
\text{Detector 6} = \frac{(\Delta I_{1C} - \Delta I_{1B}) - N_1}{\sqrt{2} V_{IC} \cdot T} \times 100(\%)
\]

3. 사례연구

생물학적 범위는 주기당 32 frec을 사용하였고, 지역 통과 멜리는 저지대한 초음 주파수 가 900 Hz인 2차 Butterworth 멜리를 설계하여, 모든 전압과 전류를 통과시켰다.

변압기 설계의 최소한의 하스테리시스 특성을 모델링하기 위하여 type-96 소자를 사용하였고, HYSDAT을 사용하기 위한 포화점은 (100A, 822V)을 사용하였다.

식 (10)~(18)에는 있는 비분할을 적용하는데, 사다리꼴 방식으로 근사화하였다.

디텍터의 임계값은 수치 오차와 계산기의 감도 등에 따라 결정된다. 본 논문에서는 5%를 사용하였고, 과도 신호에 의한 오동작을 방지하기 위하여 카운터를 사용하였다. 만약 디텍터가 5%보다 크면, 카운터를 1 증가시 키고, 적으면 1을 감소시킨다. 또한, 카운터가 0보다 작으면 0으로 한다. 카운터가 4를 초과하게 되면 트립신호를 발생시킨다.

제안한 방식을 여러돌입, 내부사고, 외부사고의 경우에 대해서 심층을 시행하였으며, 사례례연구에서는 Detector만을 나타내었다.

\[30 \text{ [GVA]} \]
\[50 \text{ [km]} \]

그림 3 모델 계통

3.1 여타돌입

그림 4는 부하, 투입 위치가 0도, 전류차 80%인 경우의 디텍터와 트립신호를 나타내었다. Trip1신호는 Detector 1~3의 결과로부터 발생되고, Trip2신호는 Detector 4~6의 결과로부터 발생된다. 모든 디텍터가 5%이내므로, Trip1신호와 Trip2신호는 발생되지 않았다.

3.2 내부사고

그림 5는 1차 권선의 A상에 증성적으로부터 60%의 지향에서 0도 지각선도 발생시의 디텍터와 트립신호를 나타내었다. 1차 권선 A상 사고이므로, Detector 1, 4, 5만 일개를 달였는느. 또한, 사고 발생시 2.9ms에 Trip1신호와 Trip2신호가 발생되었다.

3.3 외부사고

그림 6은 1차 권선에 폭격의 150%를 인가한과 여자저인 경우의 디텍터와 트립신호를 나타내었다. 모든 디텍터가 5%이내므로, Trip1신호와 Trip2신호는 발생되지 않았다.
3.4 외부사고

그림 7은 2차측 부하 선간 단락사고가 발생한 경우의 디텍터와 트립신호를 나타내었다. 이 경우도 내부사고 아니기 때문에 디텍터가 모두 5%이내이고, Trip1신호 와 Trip2신호는 발생되지 않았다.

4. 결 론

본 논문에서는 채교차속변기를 이용한 3전선 변압기 보호 방식을 제안하였다. 제안한 방식은 적분 근사 방법을 사용하기 때문에 미분 근사 방식에 비해 수치 오차가 적다. 또한, 여차돌입과 과여차와, 매우 왜곡된 전압, 전류로부터 채교차속 증분력을 확실하게 계산하였으며, 내부 사고를 여차돌입, 과하차와 정확하게 구분하였으며, 외부사고에도 오차가 나타나지 않았다.

제안한 방식은 특성한 히스테리시스 데이터를 사용하지 않으며, 시간 영역에서 동작하므로 동작속도가 빠르다.