랜덤한 점 분포를 이용한 워터마킹

이 인장

'호서대학교 컴퓨터공학부

e-mail: leeij@dorksuri.hoseo.ac.kr

Watermarking Using Random Dot Distribution

In Jung Lee

'Dept of Computer Engineering, Hoseo University

요 약: 삽입하려는 암호영상의 원본 전체 이미지 내에 랜덤하게 분포할수록 삽입과 추출성능이 좋아지는 대본 논문에서는 랜덤성이 우수한 오토스테레오 그래프를 삽입암호영상으로 사용하여 워터마크 하였을 때 복원과 추출성능이 양호함을 알았고 이를 이용하여 로고영상을 워터마크하려는 영상의 전 영역에 랜덤하게 고부 분포 하게하여 워터마크한 후 역으로 변환하여 로고를 찾았다. 영상이 많이 손상되었을 때도 추출된 로고가 유용으로 삼질할 수 있을 정도로 진공성이 우수함을 얻어보았다.

1. 서론

저작영상, 오디오, 동영상, 문서 등은 고유성과 독창성 및 원 소유주의 권리가 결여 될 가능성이 매우 크다. 그 이유 중 한 가지가 바로 소유주의 틀이 대량의 복사와 무단 복사가 가능한 것이다. 이러한 복사를 방지하는 기술 중에 영상에 암호을 삽입하여 소유권을 주장할 수 있는 기술로 워터마크 기법을 들 수 있다. 워터마크 기법은 텍스트, 이미지, 동영상, 오디오 등의 데이터에 원 소유주만이 알 수 있는 마크(Mark)를 삽입하여 사람의 유안이나 정책으로 구별할 수 없게 삽입하여 제공하는 기술을 말한다. 워터마크 삽입 시 다음과 같은 두 가지 경우가 발생한다. 첫째, 많은 양의 데이터를 워터마크로 삽입하게 되면 원 이미지가 깨어지는 현상이 생기고, 이와 반대로 적은 양의 데이터를 워터마크로 삽입하면 워터마크 추출에 문제가 있다. 둘째, 각종 이미지가 디지털 조각(JPEG, MP3 포함 등)에 의하여 삽입된 워터마크가 손상되면, 워터마크를 추출하여 저작권을 주장하는데 문제점이 있기 때문에 이를 원본에 가깝게 복원하는 기술이 필요하다[6,9]. 워터마크를 삽입하는 데 있어서 여러 방법이 제안되고 있으나 그 중에서 가장 널리 사용되고 있는 Cox의 방법은 다음과 같은 방법으로 watermark를 삽입하였다[1,2,10,11].

\[v'_i = v_i + \alpha x_i \quad \text{(식 1)} \]

여기서, \(V = \{ v_1, v_2, \ldots , v_n \} \): 원 이미지의 DCT 또는 FFT로 변환한 값.

\[X = \{ x_1, x_2, \ldots , x_n \} \quad \text{watermarking sequence} \]

\[V' = \{ v'_1, v'_2, \ldots , v'_n \} \quad \text{adjusted sequence} \]

\(\alpha \): scaling parameter

위의 (식 1)에서 파라메타 \(\alpha \)의 값을 결정하는 데 있어서 원본 데이터의 품질을 유지하면서 워터마크 데이터 추출 시 워터마크 정보 추출의 최대화를 기대할 수 있어야 한다. 본 논문에서는 (식 1)을 사용하였고, watermarking sequence로는 오토스테레오 그래프 영상을 DCT 변환한 값과 임의의 로고를 변환하여 워터마크하려는 이미지의 전 영역에 고부 분포하도록 만든 영상을 사용하였다[3,4,5]. 본 논문에서는 오토스테레오 그래프 영상 הט변환된 로고영상이 클리핑에 대해 아주 건고함을 얻어보았다.
2. 오토스테레오그램과 포인트
랜덤분포 이미지

여기서 사용한 오토스테레오그램 영상은 우리 가 어떤 목표 사물을 볼 때 발생하는 두 눈의 시각적 오차 값을 이용하여 평면의 사물이 마치 입체에 형상이 이루어지는 것처럼 인간의 착시 형상을 말하는 것이다. 이러한 원리는 그림1에 서 보는 바와 같이 두 개의 눈은 각각의 거리 (약2.5inch)에 위치하고 두 눈의 시각선은 고정된 사물을 서로 다른 방향에서 관찰되게 된다. 즉 두 개의 서로 다른 눈은 고정된 목적물을 하나 의 물체로 마치 목적물 위에 유리 위에 보이는 것처럼 보이게 되는 현상을 말한다.

![그림1] Principals of Autostereogram

오토스테레오그램은 평면에 사물을 표현할 때 사물을 구성하는 점들에 이동하는 유사한 점들 을 추가하여 목적물을 일반적 시각으로 관찰하였을 때는 알 수 없고 두 눈의 초점을 하나의 교차점에 일치 시켜 입체적 반응을 기대하는 기 법으로 오토스테레오그래프 생성 프로그램을 이용하였고 [8] 그림2에 그 예를 보였다. 오토스테레오그램은 양안시차를 이용하여 보는 것이기 때문에 어떤 영상인지 표면에 나타나지 않기 때문에 오토스테레오그램에서 원영상의 형태를 정 확하게 전부 전달하기 쉽지 않다. 두 눈 사이의 거리에 인지 당 괄호수를 계산하여 오토스테레오 그램에서 원영상 찾아볼 수 결과는 그림3에 보였다.

그림2에서 보듯이 오토스테레오그램 원 이미지 는 점들이 이미지의 전 영역에 고무 분포함을 알 수 있고 이러한 특성의 위커마크의 삽입과 추출에 좋은 영향을 주는 것을 알 수 있다.

<그림2> a) 반구를 오토스테레오그램화 한 것

<그림2> b) 영상길이에 따라 반구를 표현한 것

<그림3> hemisphere에 대한 오토스테레오그램
에서 다시 찾은 원영상 데이터의 차트

3. 보안성과 견고성

위커마크는 모든 미디어에 기본적으로 적용 되는 기술로 인식되고 있다. 저작물에 대한 정 당한 보호와 권리를 주장하기 위해 위커마크 정보를 사용한다. 이러한 것을 보장하기 위해서 위커마크 기술은 다음과 같은 고충적인 요구사항 을 만족해야 한다. 보안성(security), 무감지성 (invisibility), 견고성(robustness), 삽입정보량, 낮은 오차 확률, 검출을 위한 원본 데이터 유지 등이 요구되어진다.

위커마크의 안정성이 위커마크 알고리즘의 비밀에 의해서 유지되어 지지 않는다면, 그보다 일반적인 위커마크 사용품은 둘은 일반적으로 위커 마크 알고리즘을 비공개 하는 것에 기반을 두고 있다. 알코호 분야에서 공개키 기반의 암호화 기 술이 효과 적인 것은 잘 알려진 사실이다. 위커 마크 기술이 있어서도 해적이 삽입된 위커마크 가 어떠한 알고리즘에 의해서 삽입되었는지 모 른다는 가정 하에서 위커마크의 효율성이나, 안정성에 대하여 논란이라는 것은 무의미하고 또 매우 위협한 일이라 할 것이다. 위커마크에 대한 비밀이 일반 알려지면 지금까지 만들어진 위커마
정해한 과정은 이루 말할 수 없이 이루어질 것이다. 예를 들면 위트마크의 제거, 위트마크 정보를 복원하여 저작권의 상실, 등이 이루어져 위트마크 알고리즘을 변경해야만 되는 경우도 발생할 것이다. 또한 실제 업무에서 차별한 자의 업무 정보 유출도 발생할 것이다. 이러한 모든 사항을 고려하여 안정성을 유지하고 보증받을 수 있는 위트마크 기법이 이루어져야 할 것이다. 위트마크는 현재 멀티미디어 분야에 적용을 하고 있다. 예를 들어 음악이나 사운드 정보에 위트마크 정보를 삽입할 때 원래의 소리와 위트마크 소리가 같이 청취되던 경우의 경우가 발생하고 정취자가 위트마크를 인식할 수 있어 위트마크의 가치를 잃을 것이고, 비디오테이터에도 마찬가지일 것이다. 이러한 현상으로 멀티미디어 소비자들로부터 당연히 의문을 받을 것이다. 화상정보의 위트마크는 영상 속에 위트마크 정보를 일반적인 유한 케달로는 보이지 않게 하는 방법을 사용한다. 이러한 방법은 저작권 소유와 영상물의 절을 저하시키지 않기 때문이다. 위트마크의 무감각성을 해석의 공정으로부터 강인성을 보장해주며 요소 중에 한 가지이다. 디지털 멀티미디어 정보는 손실 부호화, 필터링, 크기 변경(resizing), 대비강조(contrast enhancement), 캐핑(cropping), 회전(rotating) 등과 같은 신호처리에 의해 쉽게 변형될 수 있다. 위트마크의 건고성을 앞서 서술한 신호처리에 대해 건고성을 갖고 위트마크이 정보 추출이 가능해야 한다. 이러한 위트마크 건고성을 보장하기 위해서는 위트마크 신호가 중요한 부분에 삽입이 이루어져야 한다는 것이 일반적 경향이 다[7].

위트마크에 대한 해석의 과정은 위트마크 자체만을 제거, 변형하는데 목적을 두었다. 그래서 대부분의 경우 윤곽으로 가능한 저주파 대역 필터(low pass filter)를 사용하거나, 좌표경계를 수행한 후 고주파 대역 신호를 제거하는 방법으로 해석이 이루어진다. 따라서 신호의 중요한 부분에 위트마크를 삽입함으로써 강인성을 보장해 해석으로부터 공격을 피할 수 있을 것이다. 또한 변환(transform), 변위(translation), 크리핑, 크기변환 등의 기하학적 변환(geometric transform)이 영상에 가해질 경우 위트마크의 건고성은 없어질 수가 있다. 위트마크의 건고성은 꼭 바로 저작권 보장과 적절될 수 있어 건고성은 무엇보다도 중요한 요건이다. 이러한 건고성을 고려하여 오토스테레오그램은 위트마크 정보를 사용하였고 또한 그 특성을 이용하여 임의의 로고를 랜덤으로 하여하여 결과를 제시하였다. 위트마크 검출 과정은 위트마크 추출 시 영상으로 필요하며 위트마크의 검출은 위트마크된 영상(온상 영상)과 원 영상의 DCT 계수차를 구한 다음 역 변환하여 스크롤 파라미터의 역을 공하여 영상을 구체화 시켜서 구한다. 건고성을 측정하기 위해 두 이미지의 유사성을 비교하는 식을 정의한다. \(X, Y\)로 비교하고 두 이미지 라 할 때 \(\text{Sim}(X, Y)\)을 다음과 같이 정의한다.

\[
\text{Sim}(X, Y) = \text{cov}(X, Y) / (\sigma_X \sigma_Y)
\]

\(X, Y\)의 표준편차이고 \(\sigma_X\)는 \(X\)의 표준편차이며 \(\text{cov}(X, Y)\)는 두영상의 코분산이다.

산업의 호슬레이어그램과 추출한 호슬레이어그램의 유사성을 보기 위해 \(\text{Sim}(LI')\)을 계산해본다. 여기서 \(I\)는 original autostragram이고 \(I'\)는 extracted autostragram이다. \(WY\)는 watermarked image라 하고 \(OX\)는 original image라 하면

\[
WY = IDCT(DCT(OX) + aDCT(I))
\]

\[
= IDCT(DCT(OX)) + aDCT(DCT(I))
\]

\[= OX + aI + \epsilon(OX) + \epsilon(I)\]

\(\text{Sim}(LI')\)은 추출효율을 나타내며

\[1/\text{Sim}(OX, WY)\]은 왜곡도를 나타내게 된다.

4. 실험결과와 결론

위에서 정의한 식을 사용하여 건고성에 대해 알아보고 있으며 실세 영상을 가지고 실험하여 얻은 결과는 그림4. 그림5과 같다. 그림4의 원목 위는 노이즈가 위트마크된 영상에 가해진 영상이고 오른쪽 위는 찾아진 위트마크이며 아래는 부분이 같이 해석된 결과를 나타낸다. 그림3에서 보듯이 노이즈를 가했을 때와 손상된 영상이라도 찾아진 위트마크가 매우 영호함을 알 수 있다. 그림5. 에서는 변환된 로고를 위트
마크 한 것으로 절단된 그림이라도 윤안으로 식별가능한 정도의 추출성능을 보였다.

그림 4 원족 위는 노이즈가 위터마크된 영상에 가해진 영상이고 오른쪽 위는 찾아진 위터마크이며 아래는 일부분이 심하게 손상된 경우를 나타낸다.

그림 5 이미지의 절단이 각각 25%, 50%, 75% 일어났을 때 추출된 위터마크 이미지.

결론적으로 오토스테레오그램과 같은 절단된 영역의 고부분포하는 이미지를 위터마크하는 것은 상업적 추출이 용이하고 건강성이 우수할 것으로 평가된다.

참고문헌