공유 대역폭 공정성을 이용한 효율적 분배 알고리즘

황길호, 구명모, 김상복
경상대학교 컴퓨터과학과
e-mail: temad666@hotmail.com

An Efficient Distribution Algorithm Using Shared Bandwidth Fairness

Kil-Hong Hwang, Myung-Mo Ku, Sang-Bok Kim
Dept. of Computer Science, Gyeongsang National University

요 약

대규모 네트워크 망인 인터넷을 통한 실시간 멀티미디어 데이터 전송에 있어 다양한 수신자의 요구를 충족시키기 위해 공유 대역폭(shared bandwidth)을 공정하게 사용해야 한다. 그러나 공유 대역폭을 공정하게만 사용하기 때문에 혼잡이 발생할 경우 가용대역폭(available bandwidth)을 효율적으로 사용할 수 있는 기법이 필요하게 되었다.

이에 본 논문에서는 최상위 레이어의 손실률에 따른 패킷 우선순위(priority)를 부여하여 패킷(packet)을 선택 제거함으로써 혼잡이 발생하지 않는 세션에서는 공유 대역폭을 보다 효율적으로 사용할 수 있는 알고리즘을 제안한다. 실험결과, 제안하는 알고리즘이 기존기법 보다 공유 대역폭을 효율적으로 사용할 수 있었다.

1. 서론

최근 컴퓨터 산업의 발전과 인터넷 환경이 이용하여 실시간 멀티미디어 데이터 전송을 요구하는 많은 응용 프로그램들이 등장하고 있다. 그러나 고정된 네트워크 환경으로 인해 사용자의 요구를 만족시켜 주지 못하고 있다.[1-2]

이러한 문제점을 해결하기 위해 공유 대역폭을 공정하게 사용하기 위한 많은 연구가 이루어지고 있다.[3-4].

라우터 지원 LMCP(Layered Multicast Control Protocol)에서는 송신자는 주기적으로 제어 패킷을 수신자에게 발행키로 한다. 이 제어 패킷을 이용하여 링크간 최소 공정-공유율(minimum fair-share rate)을 알아낸다. 라우터는 이 제어 패킷을 이용하여 공정 공유율을 계산하고 전송률 제어 패킷의 가운데로 링크의 전송률을 나눈다. 기존의 LMCP 방법의 장점을 기반으로하여 대역폭의 공정한 공유를 결정하기 위해 최소한의 처리가 필요한 라우터를 구현하였다.[5,6].

LVMFD(Layered Video Multicast with Priority Dropping)에서는 공유 대역폭의 공정성을 향상시키기 위해 레이어 기법과 우선순위 기법을 결합한 기법이다. 이 기법에서 송신자는 송신자로부터 피드백을 전송받아 수신자의 상태를 확인하고, 최상위 레이어에 우선순위를 두어 전송한다. 품질이 좋은 최상위 레이어에는 낮은 우선순위를, 품질이 좋지 않은 레이어에는 높은 우선순위를 부여하였다. 스위치에는 송신자로부터 전송된 패킷이 스위치내 쿨의 크기를 초과하면 우선순위가 가장 낮은 패킷을 제거함으로써 공유대역폭을 공정하게 사용하였다.

본 논문에서는 혼잡이 발생할 경우 혼잡이 발생하지 않은 세션에서 공유 대역폭을 효율적으로 사용하기 위한 알고리즘을 제안한다.

제안하는 알고리즘에서 송신자는 수신자로부터 피드백 정보를 받아 세션내 최상위 레이어를 수신하고
있는 수신자의 여부를 확인하고 최상위 레이어의 손실률을 임계치와 비교하여 손실률이 높은 레이어에는 제거 우선순위를 부여하여 전송한다. 스위치에서 류는 제어 우선순위를 확인하여 제거함으로써 혼잡이 발생할 경우 공유데이터속도를 효율적으로 사용할 수 있다. 2장에서 관련 연구에 대하여 살펴보고 3장에서는 혼잡이 발생할 경우 공유데이터속도를 효율적으로 분배하기 위한 알고리즘에 대해 알아보고, 4장에서는 실험결과를 통해 기존의 기법과 제안기법을 비교 분석하고, 5장에서는 결론을 제시한다.

2. 관련연구

2.1 라우터 지원 LMCP

이 기법은 어플리케이션이 공유 데이터폭을 공정하게 공유하도록 허용하는 기존 LMCP기법의 장점 을 기반으로 하여 새로운 라우터를 구현하였다. 수신자는 제어 패킷을 수신자들에게 밀리캐스트하고 이 제어 패킷은 수신자와 송신자 사이의 최소 공정 공유율을 알려준다. 라우터에서는 링크의 공정 공유율을 계산하여 이전의 공정 공유율과 비교하여 링크의 공정 공유율이 제어 패킷에 포함된 값보다 작다면 제어 패킷의 전송은 링크의 공정 공유율로 대체된다[6]. 그렇 1은 링크의 공정 공유율로 계산할 수 있도록 수정한 라우터 기반 LMCP의 메커니즘을 나타낸 그림이다.

송신자는 각 레이어에 우선순위를 부여하여 전송하고 스위치에는 각 레이어를 위한 우선순위 큐를 두어 송신자로부터 새로운 패킷이 도착할 때마다 패킷의 개수를 확인한다. 패킷의 개수가큐의 크기를 초과할 경우 우선순위가 가장 낮은 패킷을 제거한다. 패킷이 작은 최상위 레이어에에는 낮은 우선순위 를 품질이 좋지 않은 베이스 레이어에는 높은 우선 순위를 부여하였다. 최상위 레이어를 수신하는 수신 자들의 레이어를 드롭하여 베이스 레이어를 수신하 는 수신자들이 레이어를 쉽게 추가할 수 있다.

3. 공유 데이터폭의 효율적 분배

3.1 시스템 구조

본 논문의 시스템에서 송신자는 제어 패킷을 수신하는 수신자로부터 전송된 피드백 정보를 분석하여 손실률을 측정하여 각 레이어별로 적절한 전송률을 계산한다. 송신자는 수신자가 존재하는 최상위 레이 어를 선택하여 손실률에 따라 패킷 제거 우선순위와 제어 추가 드롭 우선순위를 부여하여 스위치로 패킷을 전송한다. 스위치에서는 송신자가 전송한 패킷 을 수신하여 제어 패킷 제거 우선순위를 확인한다. 패킷 제거 우선순위가 부여된 패킷은 즉시 제거하여 전송한다. 그렇지 않은 패킷은 레이어 추가 드롭 우선순위 부여 여부를 확인한다. 이 우선순위에 따라서 공정성 알고리즘의 적용 여부를 판단하여 공정성을 유지하면서 데이터폭의 효율성을 증가하도록 설계하였 다. 그림 2는 본 논문에서 제안하는 알고리즘의 전체 시스템 구조를 나타내었다.

2.1 LVMPD

를 확인한다. 수신자들이 수선하고 있는 레이어 중 가장 높은 레이어를 최상위 레이어로 설정하였다.

그림 3에서 최상위 레이어를 수신하고 있는 수신자들의 손실률을 \(\Delta \)와 비교하여 패킷 제거 우선순위를 부여한다. \(\Delta \)는 손실률에 따른 혼잡과 정상 상태를 나타내기 위한 임계치이다. 최상위 레이어의 손실률을 \(\Delta \)와 비교하여 수신률이 임계치 보다 크게 패킷 제거 우선순위를 부여하여 전송한다. 손실률이 임계치 보다 적어 우선순위가 부여되지 않은 패킷은 레이어 추가 드롭 우선순위를 부여하여 전송한다.

그림 3은 우선순위 부여 알고리즘을 나타낸다. Max_Layer는 세션내에서의 최상위 레이어를 나타내고 packet.priority.Layer는 현재 수신자들이 수신하고 있는 최상위 레이어를 나타낸다.


```c
for ( i = Max_Layer, i > 0, i-- ) {
    if ( Layer[i].member != 0 ) {
        packet.priority.Layer = i;
        break;
    }
}

if ( Layer[packet.priority.Layer].loss_rate >= \( \Delta \) )
    packet.drop.priority = 1;
else {
    packet.drop.priority = 0;
    packet.add.drop = 1;
}

packet.number = packet.Layer;
```

그림 3. 우선순위 부여 알고리즘

3.3 스위치에서의 대역폭 분배

스위치에서는 송신자가 전송한 패킷이 도착할 때마다 패킷 제거 우선순위를 확인하여 우선순위가 부여된 패킷은 즉시 제거한다. 우선순위가 부여되지 않은 패킷이 도착하면 레이어 체크 플래그 값을 확인한다. 레이어 체크 플래그 값이 설정이 되지 않았다면 바로 전송을 하고 설정이 되었다면 큐에 저장한다. 큐는 패킷이 저장될 때마다 패킷의 수를 카운터 한다. 큐에 저장된 패킷의 총 수가 큐의 크기를 초과하면 최상위 레이어로 전송되는 패킷을 제거함으로써 혼잡이 발생한 세션의 레이어 드롭으로 인한 여분의 대역폭을 흉중이 발생하지 않은 세션내 수신자가 사용할 수 있으므로 공유 대역폭을 보다 효율적으로 사용할 수 있다.

그림 4는 대역폭 분배 알고리즘을 나타낸다. 그림에서 packet.cur은 스위치에 들어온 현재 패킷을 나타내고 packet.max는 최상위 패킷을 나타낸다. packetcount(i)는 현재 레이어를 수신하는 수신자들 중 수를 나타낸다. Queue_Size는 스위치에 있는 큐의 최대크기를 나타낸다.

```c
if ( packet.drop_priority == 1 )
    Packet_Delete(packet.cur)
else {
    if ( packet.add_drop == 0 )
        Trans_Packet(packet.cur)
    else {
        i = packet.member;
        packetcount[i]++; 
        sum = 0;
        for ( i = 1 to Max_Layer, i++ )
            sum += packetcount[i];
        if sum > Queue_Size {
            for ( i = Max_Layer to 1, i-- )
                if ( packetcount[i] != 0 )
                    break;
        }
        packetcount[j]--;
        Packet_Delete(packet.max)
    }
}
```

그림 4. 대역폭 분배 알고리즘

4. 실험 결과

그림 5는 기존의 기법과 본 논문에서 제안하는 알고리즘의 실험 결과이다. 세션1이 먼저 시작하고 세션1의 수신자들이 모든 레이어 4개를 충분히 제공 받을 때까지 레이어를 추가한다. 세션2는 50초 후에 시작한다.

70초 후에 세션1과 세션2는 공유하게 대역폭을 사용하고 있음을 알 수 있다. 이때 세션 1과 세션 2의 상황은 기존의 기법과 제안 알고리즘이 두 세션의 공유 대역폭을 공유하게 사용하기 위해 공정성 알고리즘을 적용하여 각 세션은 같은 레이어(400KB/s)을 수신한다. 그림에서 160초 후 기존 기법은 세션1의 최상위 레이어를 수신하는 수신자들의 손실률이 혼잡 임계치를 초과하여 현재 수신하고 있는 레이어를 더 이상 수신하지 못하고 하위 레이어(200KB/s)로 드롭 하였음을 알 수 있었다. 그러나, 혼잡이 없는 세션에는 최소한 이전의 전송률(400KB/s)로 전
송하거나 상위 레이어(600KB/s)로 추가할 수 있는 가능성이 있음에도 불구하고 공정성을 유지하기 위해 값을 레이어(200KB/s)로 드롭하여 수신하고 있는 것을 알 수 있다.

이때, 본 알고리즘에서는 혼잡이 발생한 세션에의 수신자들이 수신하고 있는 레이어를 드롭하여 생긴 여분의 대역폭을 혼잡이 발생하지 않는 세션에서 사용할 수 있도록 분배할 수 있다. 160초 후 혼잡이 없는 세션은 대역폭 여분이 발생하여 상위 레이어(600KB/s)로 추가를 시도하여 안정적으로 수신하는 것을 불 수 있다. 그러므로, 혼잡으로 인해 발생한 여분의 대역폭을 사용함으로써 공유 대역폭을 보다 효율적으로 사용하고 있는 것을 알 수 있다.

그림 5. 실험 결과

5. 결론

고정된 네트워크 환경에서 공유 대역폭을 공정하게 사용하기 위한 기법인 LVMPD에서는 세션간 공정성을 유지하기 위해 최상위 레이어를 수신하는 수신자들의 레이어를 드롭하여 베이스 레이어를 수신하는 수신자들이 쉽게 레이어를 추가할 수 있도록 하였다. 그러나, 어느 한 세션에서 혼잡이 발생했을 때 혼잡이 발생한 세션들은 손실률을 줄이기 위해 레이어를 드롭할 필요가 있고 혼잡이 없는 세션에서는 어느 한 세션에서 혼잡이 발생하였을 경우 혼잡이 발생하지 세션에서는 더 나은 전송률을 수신할 필요가 있다. 본 논문에서는 손실률에 따른 우선순위를 부여하여 먼저 제거함으로써 공정성을 유지하였고 우선순위가 부여되지 않은 패킷을 선택적으로 제거함으로써 혼잡이 발생하지 않는 세션의 수신자들이 공유 대역폭을 보다 효율적으로 대역폭을 사용할 수 있었다.

참고문헌