자이로스코프를 이용한 자율이동로봇의 주행기록계 오차 보상

김일택, 나카자와 키조, 총석교
 아주대학교 전자공학부

Odometry Error Compensation for Mobile Robot Navigation Using Gyroscope

Il-Taek Kim, Nakazawa Kazuki, Suk-Kyo Hong
School of Electronics Engineering, Ajou University

Abstract - 본 논문에서는 자이로스코프를 이용한 자율이동로봇의 주행기록계에 대한 오차 보상을 제안한다. 자율이동로봇의 주행 시 주행기록계는 슬립과 마찰 등으로 인해 많은 방향각에 대한 오차를 포함하고 있어서 주행기록계에 의존하여 주행하기 어렵다. 주행기록계가 슬립과 회전에 대한 단정을 보상하기 위해 방향각에 대해 자이로스코프를 사용하며, 자이로스코프로부터 얻은 데이터와 주행기록계의 데이터를 융합하여 주행기록계의 오차를 줄이기 위해 이를 사용한다. 두 부분의 주행 시 주행기록계에 대한 오차를 보상하기 위해 자율이동로봇의 순간적인 각도변화에 대해서는 자이로스코프를 이용하였다. 이동로봇의 자전 주행 시 주행기록계를 사용하여 주행 했을 때는 방향각 오차가 크게 발생하였다. 그러나 주행기록계와 자이로스코프의 데이터를 융합하여 적용한 시스템의 성능이 주행기록계인 경우에 비해 보다 정확한 결과를 통해 확인되었다. 이동로봇의 안정성 있는 경우 주행을 통해 이동로봇의 보다 넓은 영역에 대한 작업이 가능하다.

1. 서론

최근 연구개발이 활발히 이루어지고 있는 이동로봇은 다른 종류의 산업용 로봇에 비하여 이동성과 조작성이 우수한 특성을 갖고 있으며, 센서 기술 및 컴퓨터 기술의 발달에 맞춰 제조업에 필수적인 각종 산업 현장에서 사람의 역할을 대행할 수 있는 높은 장착성을 갖고 있음이 인정되고 있다. 이동로봇은 주행을 하면서 여러 가지 작업들을 수행한다. 그러나 이동로봇의 자신의 위치에 대한 데이터가 부정확하면 정확한 주행이 불가능하며 작업 수행을 할 수 없다. 이동로봇의 정확한 주행을 위해 위치 측정에 관한 많은 연구가 진행되어 왔다[1]-[4].

이 논문에서는 주행기록계의 슬립과 회전에 대한 단점을 보완하기 위해 Gyrodometry방법을 이동로봇에 적용하였다[5]. 자이로스코프로부터 얻은 데이터와 주행기록계의 데이터를 융합하여 주행기록계의 비정확성을 보상하기 위한 알고리즘을 구현하였다. 토크측정은 제어에는 기존에 많이 연구되었던 비례-적분 제어기를 사용하였고, 실험은 이동로봇의 직선 주행 실험을 하였다.

2. 이동로봇 시스템

2.1 시스템의 구성

하드웨어 구성은 크게 구동부와 제어부로 나눌 수 있다. 제어부는 T1사의 TMS320LF2406A 보드와 National Semiconductor 사의 LMD18300을 이용한 모터 드라이버, 구동부는 DC MOTOR (20 watt) 두 개를 사용하여 차륜형 (Differential drive) 구동방식으로 제작하였다. 방향각에 대한 오차를 보상하기 위해 Silicon Sensing System의 CRS-03-02를 두 스크바로 채용하였다. 8조의 적외선 센서로 시각적 외부 장애물에 대한 거리를 측정하였다.

2.2 이동로봇의 거리측정

이동로봇의 거리측정은 그림 1과 같다. 이동로봇의 직진 속도 v와 각속도 w는 수식 (1), (2)와 같다.[7]

$$v = \frac{d}{dt}(w_r - w)$$

$$w = \frac{d}{dt}(w_r + w)$$

그림 1. 이동로봇의 기기구

그림 2. 이동로봇의 제어 블록도

2.3 이동로봇의 시스템 블록도

이동로봇의 경로 추종 시스템 블록도는 그림 2와 같다. 속도와 각속도의 참조 입력에 대해 현재 이동로봇의 속도와 각속도를 비교하여 간단한 비례 제어기를 동하여 이동로봇의 각각의 모터의 속도를 출력하게 되고 각각의 모터의 속도 제어기를 통하여 이동로봇을 제어한다.
2.4 자이로스코프의 소개

실험에 사용된 센서는 Silicon Sencing System의 CRS 03-02 이다. MEMS 기술을 이용해 제작된 센서는 구조의 자이로스코프 코팅에 힌의 원리에 이용하여 외부 회전속도(각속도)를 감지해 내는 센서이다. 표 1에 실험에 사용된 자이로스코프의 규격을 나타내었다.

표 1. 자이로스코프 규격

<table>
<thead>
<tr>
<th>특성</th>
<th>범위</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Range</td>
<td>± 100 deg/sec</td>
</tr>
<tr>
<td>Output Scale Factor</td>
<td>200 mV(deg/sec)</td>
</tr>
<tr>
<td>Bias initial error</td>
<td>± 60 mv</td>
</tr>
<tr>
<td>Bias var, over Temp</td>
<td>± 60 mv</td>
</tr>
<tr>
<td>Bias ratiometric error</td>
<td>± 20 mv</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>> 10 Hz</td>
</tr>
<tr>
<td>Quiescent noise</td>
<td>< 1 mVrms</td>
</tr>
</tbody>
</table>

3. 이동로봇 주행 실험

3.1 실험 환경

이동로봇은 그림 3과 같이 제작하였다. 이동로봇 주행 중 실내외부에 대한 기준이 없기 때문에 그림 4와 같이 실험을 구성하였다. 모든 실사에서 로봇의 첨조 입력은 \(v_x = 0.1 \text{ m/sec} \), \(w_x = 0 \text{ m/sec} \) 이다.

배관의 거리는 적외선 센서를 이용하여 측정한다.

![그림 3. 실험 대상 이동로봇](image)

 그림 3. 실험 대상 이동로봇

3.2 전속도 주행시 모터의 속도 및 근사화

입력이 일정할 때 모터의 속도를 가지고 1차로 근사화하여 각각의 \(T, K \) 를 구하였다. 식 (3)과 (4)는 각각의 모터를 근사화한 전달함수를 나타낸다.

\[
G_{1-\text{motor}}(s) = \frac{0.3504}{s + 2.85} \quad (3)
\]

\[
G_{2-\text{motor}}(s) = \frac{0.3322}{s + 2.674} \quad (4)
\]

모델링된 양쪽 모터에 각각 비례-적분 제어기를 설계하였다. 0.1m/s 의 스텝 응답결과 그림 5과 같다. 이동로봇의 양쪽 모터를 각각 속도 제어로 모바일 로봇의 경로 주행을 제어하였다.

![그림 4. 실험 구성](image)

 그림 4. 실험 구성

3.3 주행기록계만 사용한 위치 추정

그림 6은 주행기록계만 사용했을 때 이동로봇의 주행 경로를 보여준다. 실제 이동시 바닥면에 놓아 놓아 바닥의 속도와 주행기록계의 오차를 유발하였다.

그림 6의 결과로 보면 주행기록계를 이용한 직진주행이 오차 없이 잘 수행함을 알 수 있다. 그림 7은 주행기록계만 사용하여 주행하였을 때 이동로봇과 원쪽 벽면과의 거리를 적외선 센서를 이용하여 측정한 결과이다. 그림 7에서는 로봇의 원쪽 벽면과 벽에지는 것을 볼 수 있다. 주행기록계는 직진을 한다고 해석하고 있지만 실제 로봇은 벽으로 치우치기 때문이다.

![그림 5. 이동로봇의 Step Response](image)

 그림 5. 이동로봇의 Step Response

![그림 6. 이동로봇의 주행경로](image)

 그림 6. 이동로봇의 주행경로

3.4 주행기록계만 사용 시 분석

그림 8에서 첫 번째 그림은 이동로봇의 주행 시 주행기록계에서 나온 각속도 값이다. 두 번째 그림은 이동로봇의 주행 시 자이로스코프에서 나온 각속도 값이다. 각의 동일한 결과를 출력할 수 있다. 2 sec, 4 sec, 6 sec, 8 sec, 10 sec, 12 sec 경도에 따라 첫 번째 원이 위치를 동편하면서 각속도 값이 변화하는 것을 볼 수 있다. 세 번째 그림은 자이로스코프와 주행기록계의 차이이다. 그래프 결과에서 알 수 있듯이 정지 주행 시 자이로스코프와 주행기록계의 차이는 거의 0에 가깝다. 그러나 왜이어를 통과하는 시점에서는 슬립과 같은 오차로 인해 자이로스코프와 주행기록
의 결과와 차이가 발생한다. 차이가 일정한 크기 미만에서는 주행기록계의 데이터가 차이가 일정한 크기 이상 발생하는 영역에서는 자이로스코프의 데이터를 이용하여 다음 실험을 하였다. 반복적인 실험을 통해 자이로스코프 주행기록계의 차이가 0.032 rad/sec 이상일 때는 자이로스코프의 데이터를 0.032 rad/sec 미만일 때는 주행기록계의 데이터를 이용하였다.

3.5 주행기록계와 자이로스코프를 사용한 위치추정

그림 9는 주행기록계와 자이로스코프를 사용했을 때 이동로봇의 주행 경로를 보여준다. 이전 실험과 동일하게 이동로봇의 위치를 제한하여 바퀴의 송립과 주행기록계의 오차를 유발하였다. 그림 9의 결과로 보면, 자이로스코프를 이용할 때 진전주행이 오차 없는 상태를 줄 수 있었다.

그림 10은 주행기록계와 자이로스코프 사용하여 주행하였을 때 이동로봇과 원주 벤면과의 거리를 직선선을 이용하여 측정한 결과이다. 이동로봇이 한쪽으로 치우침 없이 직선으로 주행하는 것을 볼 수 있다.

4. 결론

이동로봇의 주행 중 위치 측정에 대해 많이 사용되는 방법 중 하나는 주행기록계를 사용하여 주행거리 변위량으로 현재 위치를 계산하는 자가 육도 주행 방법이다. 그러나 측정값에 포함된 오차가 위치 값에 연속적으로 누적되기 때문에 주행 구간이 긴 원거리 주행에는 부적합하다.

본 논문은 자이로스코프를 이용하여 주행기록계에서 누적되는 오차를 줄이므로 현재 위치 및 방향을 정확히 측정하고 정확한 직선주행을 할 수 있도록 주행기록계 누적 오차를 보상하는 방법을 제안하였다. 자이로스코프와 주행기록계의 각도의 차이를 높 경우 자이로스코프 데이터가 더 정확하다는 가정하에 실험을 수행하였고, 실험 결과, 자이로스코프를 통한 방향각 보상이 타당함을 보였다.

추후로는, 컴퓨터와 자이로스코프를 이용하여 직선주행뿐만 아니라 곡선주행시 정확한 방향각을 얻을 수 있는 방법에 대한 연구를 수행하여야 할 것이다.

[참고 문헌]

