Direct Adaptive Control System for Path Tracking of Mobile Robot Based on Wavelet Fuzzy Neural Network

Joon Seop Oh, Jin Bae Park, Yoon Ho Choi

Dept. of Electrical & Computer Eng., Yonsei Univ., School of Electronic Eng., Kyonggi Univ.

Abstract - In this paper, we present a novel approach for the structure of Fuzzy Neural Network (FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model (WFM) has the advantage of the wavelet transform by constituting fuzzy basis function (FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure (WFNN) that merges these advantages of neural network, fuzzy model and wavelet. To verify the effectiveness of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

1. Introduction

Motion control of mobile robots is a typical nonlinear tracking control issue and has been discussed with different control schemes such as PID, GPC, sliding mode, and predictive control etc [1]-[3]. Intelligent control techniques, based on neural networks and fuzzy logic, have also been developed for path tracking control. Even though these intelligent control strategies have shown effectiveness, especially for nonlinear systems, they have certain drawbacks derived from their own characteristics. While conventional neural networks have good ability of self-learning, they also have some limitations such as slow convergence, the difficulty in reaching the global minima in the parameter space, and sometimes instability as well [4]-[5]. In case of fuzzy logic, it is a human-imitating logic, but lacks the ability of self-learning and self-tuning. Therefore, in the research on the intelligent control, FNNs are devised to overcome these limitations and to combine the advantages of both neural networks and fuzzy logic [6]-[7]. This provides a strong motivation for using FNNs for modeling and controlling nonlinear systems. And the wavelet fuzzy model (WFM) has the advantage of the wavelet transform by constituting FBF, the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions and modifying fuzzy model to be equivalent to wavelet transform. The conventional fuzzy model cannot give the satisfactory result to the transient signal. On the contrary, in the wavelet fuzzy model, the accurate fuzzy model can be obtained because the energy compaction by the unconditional basis and the description of a transient signal by wavelet basis functions are distinguished. Therefore, we design a FNN structure based on wavelet that merges these advantages of neural network, fuzzy model and wavelet. And we present the direct adaptive control system using WFNN structure. The control signals are directly obtained by minimizing the difference between the reference track and the pose of a mobile robot that is controlled through a WFNN. The control process is a dynamic on-line process that uses the WFNN trained by GD method. Through computer simulations, we demonstrate the effectiveness and the feasibility of the proposed control method.

2. Wavelet Based Fuzzy Neural Network

The basic idea of WFNN is to realize the process of fuzzy reasoning of wavelet fuzzy model by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. WFNNs can automatically identify the fuzzy rules by modifying the connection weights of the networks using the gradient descent scheme. Among various fuzzy inference methods, WFNNs use the sum-product composition. The functions that are implemented by the networks must be differentiable in order to apply the gradient descent scheme to their learning.
the consequence parts consist of nodes (D) through (F). The nodes (B) and (E) are used to equalize the linear combination of FBF with the linear combination of wavelet functions for the advantage of wavelet transform by constituting FBF and conclusion part. Therefore, the output node (F) is equivalent to wavelet transform. Consequently, in our WFN model, the output y is calculated as follows:

$$\hat{y} = \sum_{i=1}^{N} w_{i} x_{i} + \sum_{j=1}^{P} \beta_{j} \phi_{j}$$

(1)

where,

$$\beta_{j} \phi_{j} = w_{j} \prod_{i=1}^{N} \left(1 - \frac{x_{i} - m_{k,n}}{d_{k,n}}\right) \exp \left(-\frac{1}{2} \left(\frac{x_{i} - m_{k,n}}{d_{k,n}}\right)^{2}\right)$$

Mother wavelet: $\phi(z) = -z \exp \left(-\frac{1}{2} z^{2}\right)$, $z = \frac{x - m}{d}$

k_{n}: n-th fuzzy variable of n-th input, N: input Num., K_{n}: fuzzy variable Num of input n, R: wavelet Num.

The consequence parts consist of nodes (D) through (F) and the fuzzy reasoning is calculated as:

$$R^{I}: \text{If } x_{1} \text{ is } A_{1}, \ldots, x_{n} \text{ is } A_{k,n} \text{ and } x_{n} \text{ is } A_{k,N} \text{ then } y_{c} = \frac{w_{c}}{c} (j = 1, 2, \ldots, R \text{ and } c = 1, 2, \ldots, C)$$

where, R^{I} is the j-th fuzzy rule, $A_{k,n}$ is fuzzy variable in the premise, w_{c} is a constant. The weights w_{c} are modified to identify fuzzy rules using the gradient descent method.

3. Path tracking control for mobile robot using WFN model

3.1 Dynamic Model of Mobile Robot

The robot used in this paper is composed of two driving wheels and four casters and is fully described by a three dimensional vector of generalized coordinates constituted by the coordinates of the midpoints of the two driving wheels, and by the orientation angle with respect to a fixed frame as shown in Fig 2. We have the equation for motion dynamics as the follows:

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \\ \theta_{k+1} \\ \lambda_{k+1} \end{bmatrix} = \begin{bmatrix} x_{k} \\ y_{k} \\ \theta_{k} \\ \lambda_{k} \end{bmatrix} + \begin{bmatrix} \delta x_{f} \cos(\theta_{k} + \frac{\delta \lambda}{2}) \\ \delta x_{f} \sin(\theta_{k} + \frac{\delta \lambda}{2}) \\ \delta \theta_{k} \end{bmatrix}$$

$$\begin{bmatrix} \delta d \\ \delta \theta \end{bmatrix} = \begin{bmatrix} d_{l} - d_{r} \\ \frac{d_{l} - d_{r}}{b} \end{bmatrix}$$

(2)

Fig. 2 Mobile Robot Model

where, δd and $\delta \theta$ are linear velocity and angular velocity. And d_{l} and d_{r} are two incremental distances of two driving wheels and distance between these two wheels, respectively.

3.2 The direct adaptive control system using WFN model

The purpose of our control system is to minimize the state errors $R(x, \ldots, r_{n}, \ldots)$ between reference trajectory and controlled trajectory of a mobile robot. The overall control system is shown in Fig 3. A WFN controller calculates the control input $u = [\delta d_{l}, \delta \theta]^{T}$ by training the inverse dynamics of plant iteratively. But, the updating of WFN parameters through the variation rate $J(u, Y)$ in the gradient descent method cannot be calculated directly. So, we train the parameters of WFN through the transformation of the output error of plant in this structure, inputs are composed of errors between reference trajectory and controlled trajectory, and outputs are control variables. Each control variable is as shown in Eq. (3).

$$\begin{align*}
\delta d_{l} &= \sum_{i=1}^{3} \sum_{j=1}^{p} \delta d_{l}^{i} + \sum_{i=1}^{3} \delta d_{l}^{i} + \sum_{i=1}^{P} \beta_{j} \delta \phi_{j} \\
\delta \theta &= \sum_{i=1}^{3} \sum_{j=1}^{p} \delta \theta^{i} + \sum_{i=1}^{P} \beta_{j} \delta \phi_{j}
\end{align*}$$

(3)

Training Procedure:

- Definition of the following cost function so as to train the WFN controller based on direct adaptive control technique.

$$C = \frac{1}{2} (x_{s} - x)^{2} + (y_{s} - y)^{2} + (\theta_{s} - \theta)^{2}$$

(4)

- Calculation of the partial derivative of the cost function with respect to the parameter set of a WFN controller.

$$\frac{\partial C}{\partial \theta_{s}} = -e_{x} \partial \theta_{s} - e_{y} \partial \theta_{s} - e_{\theta} \partial \theta_{s}$$

$$\frac{\partial C}{\partial \theta_{s}} = -e_{x} \partial \theta_{s} - e_{y} \partial \theta_{s} - e_{\theta} \partial \theta_{s}$$

where, $e_{x} = x_{s} - x$, $e_{y} = y_{s} - y$, $e_{\theta} = \theta_{s} - \theta$ and $J(u) = \frac{\partial Y}{\partial u}$ is the feedforward Jacobian of plant and is as follows.

$$J(u) = \begin{bmatrix}
\cos(\theta + \frac{\delta \lambda}{2}) - \frac{\delta \lambda}{2} \\
\sin(\theta + \frac{\delta \lambda}{2}) \frac{\delta \lambda}{2} \\
\cos(\theta + \frac{\delta \lambda}{2}) \frac{\delta \lambda}{2} \\
0
\end{bmatrix}$$

(5)

The partial derivative of the control input u with respect to the parameters of a WFN controller can be calculated by using the equations (7) and (8).

$$\begin{align*}
\gamma_{i}(n+1) &= \gamma_{i}(n) + \gamma_{i}(n) - \gamma_{i}(n) - \eta \frac{\partial C}{\partial \gamma_{i}} \\
\gamma_{i}(n+1) &= \gamma_{i}(n) + \gamma_{i}(n) - \gamma_{i}(n) - \eta \frac{\partial C}{\partial \gamma_{i}}
\end{align*}$$

(7)

where, η is the learning rate of a WFN. From equations (5) and (6), $\frac{\partial C}{\partial \gamma_{i}}$ is the gradient of the controller output, u, with respect to parameters set γ_{i}.
\[
\frac{\partial y_s}{\partial x} = \frac{\sum_{n=1}^{p} y_n}{\sum_{n=1}^{p} \left(\frac{\sum_{m=1}^{n} y_m}{d_{n,m}} \right)^{\frac{1}{2}}}
\]

where, subscript \(c \) and \(u \) denote control input and input of WFNN, respectively.

4. Simulation Results

In this section, we present simulation results to validate the control performance of proposed WFNN controller for the path tracking of mobile robots. In this simulation, we use parameters as shown in Table 1. Where, initial values of network weight are determined randomly. This simulation considers the tracking of a trajectory generated by the following displacements:

Linear velocity	Ad 10m/sec	Angular velocity	Ad 0.1 deg/sec	(0 < t \leq 5)
Linear velocity	Ad 10m/sec	Angular velocity	Ad 0.1 deg/sec	(5 < t \leq 10)
Linear velocity	Ad 10m/sec	Angular velocity	Ad -0.1 deg/sec	(10 < t \leq 15)
Linear velocity	Ad 10m/sec	Angular velocity	Ad 0.1 deg/sec	(15 < t \leq 20)

Table 1. The parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Membership Function</td>
<td>11</td>
</tr>
<tr>
<td>(Number of Mother Wavelet)</td>
<td></td>
</tr>
<tr>
<td>Sampling Time</td>
<td>0.01</td>
</tr>
<tr>
<td>Learning Rate</td>
<td>0.02</td>
</tr>
<tr>
<td>Departure Position vector</td>
<td>(5,5,0)</td>
</tr>
</tbody>
</table>

Fig. 4 shows the reference path and the controlled path using WFNN controller for a mobile robot. Also, Fig. 5 shows the control errors for path tracking of a mobile robot. Fig. 6 shows the control inputs from WFNN controller and the feed forward Jacobian of a mobile robot system.

5. Conclusions

In this paper, we have proposed a FNN structure based on wavelet that merges the advantages of neural network, fuzzy model and wavelet. In addition, a WFNN controller based on direct adaptive control scheme has also been presented for the solution of the tracking problem for mobile robots. Through computer simulations, we have confirmed that direct adaptive control system using our WFNN controller works well although the tracking error was occurred in case that a direction is changed.

Acknowledgment

This work was supported by KOSEF R01-2001-000-00316

References