Abstract - CEMTool is a command style design and analyzing package for scientific and technological algorithm and a matrix based computation language. In this paper, we present new FEM (Finite Element Method) package in CEMTool environment. In contrast to the existing MATLAB PDE Toolbox, our proposed FEM package can deal with the combination of the reserved words. Also, we can control the mesh in a very effective way. With the introduction of new mesh generation algorithm and NDM (Nested Dissection Method), our FEM package can guarantee the shorter computational time than MATLAB PDE Toolbox. In addition, using the advanced electromagnetics library of CEMTool FEM package, we can analyze the practical problems such as the motor field analysis. Consequently, with our new FEM package, we can overcome some disadvantages of the existing MATLAB PDE Toolbox.

1. Introduction

Finite element method (FEM) has been widely used in solving structural, mechanical, heat transfer, and fluid dynamics problems as well as problems of other disciplines. There are many kinds of the specialized FEM package for electromagnetics, structural mechanics, heat transfer, and diffusion. Among the numerical general-purpose packages for scientific computing, MATLAB is one of the well-known package for science and engineering that performs mathematical and engineering computation. As a tool to analyze the solution of PDE (Partial Differential Equation) in MATLAB, the MATLAB PDE Toolbox (1) contains basic tools for the study and solution of PDE in two space dimensions (2-D) and time, using the finite element method. Its command line functions and graphical user interface can be used for mathematical modeling of PDE in special ranges of engineering and science applications. However, MATLAB PDE Toolbox has some disadvantages as follows: (1) It can deal with only constant coefficients. (2) It requires much computational time for mesh generation and solving for the finite element analysis. (3) It has no mesh control and refinement algorithms. (4) It cannot be applied to the practical analysis and design problems such as motor field analysis.

As another powerful numerical general-purpose package, CEMTool integrates mathematical computing, visualization, and a powerful high-level language to provide a flexible environment for technical computing [2, 3, 4, 5]. In this paper, we present a new FEM package which overcomes the some existing disadvantages of MATLAB PDE Toolbox. Our FEM package in CEMTool contains the lexical analyzer and the parser to deal with the general combination of reserved words. That is why we can solve the PDE represented by the combination of some reserved words and mathematical operators [4, 5]. Also, it contains mesh refinement and control algorithms by the dense factor in GUI (Graphic User Interface) FEM Package. So, it is possible to obtain the accurate results in a pre-defined region. In addition, it guarantees the high speed for finite element analysis with new mesh control algorithm and NDM (Nested Dissection Method). Finally, since our new FEM package has the advanced electromagnetics library, we can solve the practical analysis and design problems for electromagnetics.

In Section 2, GUI based CEMTool FEM package is presented. In Section 3, we discuss command-mode FEM package of CEMTool. In Section 4, we introduce the advanced electromagnetics library. The conclusion is given in Section 5.

2. GUI FEM package of CEMTool

2.1 GUI FEM Pre-processor

CEMTool GUI FEM pre-processor requires the information on the shape of model, the characteristic of material, and the boundary condition of the region, the division of elements as input. Then, it produces the information on elements, nodes, regions, and materials for finite element analysis as output. For the purpose of easy input for model shape and boundary condition, it provides various kinds of new and convenient tools and dialogs. We can input the shape information with various existing CAD tools such AutoCAD easily. Then, we can input the material values and the boundary conditions with convenient dialogs. It is possible to make partial modification.

Fig. 1. Some features of GUI FEM pre-processor
3. Command-mode FEM Package of CEMTool

3.1 Basic Command mode FEM Functions

In order to obtain the solution of PDE represented by a equation form in a pre-defined region, it is not appropriate to use GUI based FEM package. In this situation, we need a new FEM package which can solve the combination of the reserved words directly. CEMTool command-mode FEM package has the lexical analyzer and the parser to deal with the general combination of reserved words such as "sin", "cos", and "cotact". That is why we can solve the PDE represented by the combination of some reserved words and mathematical operators. Basically, the border function of CEMTool FEM Toolbox requires some information on the boundary which is represented by the combination of the reserved words in x and y coordinates. After defining the boundary region, in order to generate the triangular mesh based on a Delaunay Voronoi algorithm, we can employ the makemesh function of CEMTool FEM Toolbox by using the information on the maximum number of vertices as the only parameter of the makemesh function. For the assignment of the boundary conditions, the boundary condition function can be used with the information of the identification numbers and the general boundary conditions represented by some reserved words of CEMTool FEM Toolbox. In order to construct the solution of the PDE we want to solve, we need the FEM solver function of CEMTool FEM Toolbox with the information of the PDE which is represented by the combination of the basic mathematical operator and the reserved words. Since we employ the compiler based technique in the command-mode FEM solve function, compared to MATLAB PDE Toolbox, we need not classify the PDE we want to solve as elliptic equations, parabolic equations, and hyperbolic equations. Finally, the post-processing functions such as "meshplot", "equi-potential plot", and "3D plot" can be used to visualize the solution of the PDE generated by CEMTool FEM Toolbox. The basic structure of CEMTool command mode FEM Toolbox can be described in Fig 4. In addition, it includes the
dynamic FEM codes for real-time solution of time-varying PDE.

3.2 3D FEM Post-processor

In order to visualize the solutions of PDE in a user-defined region, CEMTool command-mode FEM Toolbox has the powerful plot functions. The meshplot function shows the triangular mesh generated by the makemesh function without the information on height. Also, the equipotential function of CEMTool FEM Toolbox can visualize the equipotential lines with the information on height in 2-dimensional coordinates. The new feature of the post-processing functions of CEMTool FEM Toolbox is the 3D plot. The FEM 3D plot uses OpenGL library for the enhanced 3D graphic. This function shows the triangular meshes and the equipotential lines in 3-dimensional coordinates with the information on height. In Fig 5, the 3D plot for Poisson equation in the rectangular region is given. In addition, The FEM 3D plot has the various functions such as rotation, transition, zoom-in, zoom-out, painting the faces, smooth view, and light function.

4. FEM Library for Electromagnetics Analysis

In this section, we present the advanced CEMTool FEM library for practical electromagnetic problems. The detailed FEM electromagnetics library can be summarized as follows:
- If there exists the magnetic flux more than the critical value in magnetic substance, the magnetic permeability is changed and we have to consider the nonlinearity of the magnetic permeability. In CEMTool FEM library, using Newton-Rapson method, we have developed the nonlinear analysis module to guarantee the stability of analysis for magnetic problems.
- We have developed the axis-symmetric analysis module for electric, magnetic dipole problems. Also, this module can consider the nonlinearity of the magnetic permeability when there exists the magnetic flux more than the critical value in magnetic substance.
- We have developed the AC analysis library and the eddy current analysis module. This was implemented by the help of FEM Property Setup program. CEMTool eddy current analysis module can simulate the distortion made by the eddy current in conductor when there exists the change of magnetic fields.

5. Conclusion

In this paper, we present new GUI based and command-mode based FEM package in CEMTool. Our FEM package can overcome the existing disadvantages of MATLAB PDE Toolbox with the introduction of the compiler based technique, the new mesh refinement algorithm, and the nested dissection method. Due to these techniques, in contrast to MATLAB PDE Toolbox, we can deal with an equation based PDE and can guarantee the shorter computational time for the finite element analysis, and can refine mesh very effectively. Since CEMTool FEM package has the advanced electromagnetics library, it can be applied to practical analysis and design problems such as motor field analysis and scattering wave analysis.

[Reference]