선박보안경보장치(Ship Security Alert System)의 기능 및 기술적
특성 연구

장동원*
*한국전자통신연구원

A Study on Technical features and characteristics for Ship Security Alert Systems

Dong-won, Jang
*Electronics and Telecommunications Research Institute
E-mail : dwjang@etri.re.kr

요 약

선박보안경보장치(Ship Security Alert System)는 2001년 미국 9월11일 테러 이후에 전세계적으로
이에 대응하기 위한 방안으로 해상에서 선박을 통해 발생될 수 있는 테러에 대비하기 위한 통신시스템으로 2004년 7월1일 이후에 간소한 선박에는 반드시 탑재되어야 한다. 이 장치는 IMO SOLAS 국제 조약에 따르며 선박의 안전이 위협을 받고 있거나 위태롭게 되었음을 해당기관에 표시하기 위하여 실시간으로 보안정보를 송신할 목적으로 선박에 설치되어야 한다. 무선통신설비는 특별히 정지하는
없지만 전세계를 포함하기 위하여 위상성을 사용하는 것이 유리하다. 본 고에서는 선박보안경보장치
의 필수 기능 및 사용 가능한 통신시스템 특성에 대해서 분석하였으며 국내 관련 기술기준 맥락에
대하여 제안하였다.

ABSTRACT

In this paper, we analysed the technical features and characteristics for Ship Security Alert Systems(SSAS). Due to the steady increase in incidents, and partly triggered by the events of 9/11, the International Maritime Organisation (IMO) initiated an intense programme of activity, resulting in a conference on maritime security measures during December 2002. IMO SOLAS Regulation XI-2/6 applies to the following types of vessels on international voyages which include passenger ships, including high-speed passenger craft, cargo ships, including high-speed craft, of 500 gross tons and upwards and mobile offshore units. The paper has discussed on international technical trends and its characteristics and provided how to regulate for activating and harmonizing internationally domestic ships.

키워드
선박보안경보장치, ship security alert system, interference, emission

1. 서 론

선박보안경보장치(SSAS : Ship Security Alert System)는 2001년 미국 9월11일 테러 이후에 전세계적으로 이에 대응하기 위한 방안이며, 해상에서 선박을 통해 발생될 수 있는 테러에 대비하기 위한 통신시스템이다. 2004년 7월1일 이후에 간소된 국제 향로 모든 여객선 및 500톤급 이상의 모든 화물선, 그리고 MODU(Mobile Offshore Drilling Units)에는 반드시 탑재되어야 한다. 또한 원측선의 경우에 익착선, 유조선, 가스 등 화물선은 2004년 7월 1일 이후 첫 검사시까지 탑재해야 하며, 기타 500톤 이상의 화물선 및 MODU는 2006년 7월
1일 이후 첫 검사시까지 탑재해야 한다. SSAS는 IMO(International Maritime Organization) SOLAS(Safety of Life at Sea) 국제 조약에 따
로써 선박의 안전이 위협을 받고 있거나 위험사례되어 있음을 해양기관에 표시하기 위하여 용상으로 보안경보를 송신할 목적으로 선박에 설치되어야 하며, 최소 두 개의 작동 버튼으로 구성되어 그 중 하나는 항해선교에 있어야 한다.

유상에 있는 해양기관으로 경보를 주기 위하여 음성의 조작이 가능하여야 하며 본선이나 주위에 있는 선박에 경보를 발생시켜서 안되며 선박의 주관성이 요구하는 바에 따라 이러한 경보를 수신한 해양기관은 선박의 주관정 내에 있는 해상 보안에 책임이 있는 기관, 그 선박이 현재 운항하고 있는 인근 연안국(들) 또는 기타 협력 당사국 정부에 통보해서 조치하여야 한다.

SSAS는 전세계를 포괄하기 위하여 음성으로 이용하여 보안경보신호를 송출로 보내며 INMARSAT C를 비롯하여 INMARSAT mini-C와 D+ 그리고 COSPAS/SARSAT가 SSAS 서비스 제공으로 가장 많이 사용되고 있다. 따라서 우리나라의 SSAS 기술기준도 기존 위상각 무선설비 기술기준을 근거로 하여 제정하는 것이 바람직하다.

본 보고서는 SSAS에 대한 기술기준을 제정하기 위한 기반 구축을 위해 국제적인 표준화 통향(IMO, ISO/IEC, ITU 등) 및 새로운 기술(위성 등)에 관련하여 분석하고 이를 바탕으로 국내 기술기준 제정(안) 방향에 대해서 제시하였다.

II. 본론

SSAS는 2001년 9월11일에 발생한 미국 테러에 의해서 급속하게 추진되었다. 테러 직후인 2001년 9월12일에 UN총회에서 결의서(UN Rec.1373)가 채택되었으며 이 결의서에 근거해서 2001년 11월20일에 국제 해상 기구인 IMO 총회에서 테러방지를 위한 대책 및 결제결의서(Rec. A.924(22))를 채택하였다. 2002년 5월15일에는 IMO 상하위위회 회의(MSC/15th Safety Committee(75))에서 A.924(22)결의서를 구체적 논의와 제목을 채택하였다. 이 결의서에 의해서 SSAS 성능표준 분야만이 작성되었으며 2002년 10월 MSC(76)회의에서 SSAS 성능표준 권고안이 수용되어 MSC136(76)회의에서 2003년 1월에 COMSAR(בונdden COMMUNICATIONS and Search and Rescue)회의에 검토를 요구하였다. 이에 따라서 2004년 9월 1일부터 시행될 수 있도록 최종 결의하였다.

SSAS에 대한 요구사항 및 성능 표준은 IMO SOLAS XI-2/6과 IMO MSC147(77) 결의서에 규정되어 있다.

SSAS는 선박의 안전이 위협을 받고 있거나 위험사례되어 있음을 해양기관에 표시하기 위하여 용상으로 보안경보를 송신할 목적으로 선박에 제공되며 최소 두 개의 작동 개시기능(버튼)으로 구성되어 그중 하나는 항해선교에 있어야 한다. 이들 작동 개시기능에서 선박보안경보를 송신할 개시

다. SSAS는 용상에 있는 해양기관에 경보를 주기 위하여 음성의 조작이 가능하여야 하며 본선이나 주위에 있는 선박에 경보를 발생시켜서 안되며 선박의 주관성이 요구하는 바에 따라 이러한 경보를 수신한 해양기관은 선박의 주관정 내에 있는 해상 보안에 책임이 있는 기관, 그 선박이 현재 운항하고 있는 인근 연안국(들) 또는 기타 협력 당사국 정부에 통보해서 조치하여야 한다.

SSAS는 SOLAS 제4장에 적합하게 설치된 무선설비를 이용하거나 기타 일반 통신을 위하여 제공된 무선통신장치 또는 전용 무선통신장치를 이용할 수 있다.

2.1 SSAS 기술 개요

2004년 제3차 IMO 회의의 결의에 따라 2004년 7월 1일부터 SSAS의 선박 탑재를 의무화 하는 미국 선진국에서는 SSAS에 대한 일반규정인 SOLAS XI-2/6와 성능조건 IMO MSC.1477 결의서를 근거하여 각국의 SSAS 기술기준을 제정하고 있다. 이에 따라 우리나라의 해양수산부도 이에 따르자와 같은 SSAS의 호응 및 성능 요구사항을 규정하였으며, 정보통신부도 SSEs에 대한 조속한 국내 기술기준을 마련하여 2004년 7월 1일부터 시행될 수 있도록 SSAS 의무 탑재 규정에 적용할 수 있도록 해야 한다.

2.1.1 IMO SOLAS XI-2/6

- 의무적 요구사항
 - 최소한 두 개의 주동생(alert activation point)을 준비해야 하며 그 중 하나는 선교(bridge)에 있어야 한다.
 - 선박의 에이전트(competent authority)이 비상 신호 전송을 음성화하게 이루어져야 한다.
 - 선박의 다른 선박에 경보가 발생되지 않아야 한다.

- 성능 표준
 - SSAS로 사용되는 무선장치는 합당한 국제 표준에 적합해야 한다.
 - SSAS의 선박의 주 전원으로 동작되어야 함, 대체 전원으로도 동작할 수 있어야 한다.
 - 동작점은 행해 선교와 다른 장소에서 사용할 수 있어야 한다. 또한 동작점으로부터 보호되어야 하며 이주할 포도를 갖게 되어야 한다.
 - 동작점은 보안 경보 전송이 무선장치를 조정(세널 튜닝, 포드 세팅, 매뉴 선택 등)하지 않더라도 동작할 수 있어야 한다. 또한 동작점 운용은 선장에서 어떠한 경보나 표시를 발생하지 않는다. SSAS 운용은 GMDS(S(Global Maritime Distress and Safety System) 설치 기능을 획득해서는 안된다.
 - 모든 경우에 있어서 SSAS 동작점에 의해 시작된 전송은 경보가 GMDS 조절 점자에 의해서 발생되지 않았음을 나타내는 고유 코드나 신호를 포함해야 한다. 그리고 전송에는 선박 식별자 및 현재 위치를 포함해야 한다. 이 전송에는 해안국의 주소가 포함되어 선박국의 주소는 포함되지 않는다.
2.1.2 IMO MSC.147(77) 결의서 (SSAS의 성능 기준)

개 요

- SSAS는 선박의 안전을 위협받을 경우나 위체를 계대한 경우에 해당기관에 제출하기 위하여 육상으로 보안정보를 송신할 목적으로 선박에 제공된다. 이것은 최소 두개의 작동 개시점으로 구성되어 그 중 하나는 항해선교에 있어야 한다. 이들 작동 개시점에서 선박보안정보의 송신을 개시한다. 그 장치는 육상에 있는 해당기관에 정보를 주기적으로 유통한 조직이 가능하여야 하며, 본선이나 주위에 있는 선박에 대해서는 정보를 통행관계자는 안한다. 최소한 두 개의 동작점(Alert activation point)을 준비해야 하며 그 중 하나는 선교(Bridge)에 있어야 한다.

- 선박의 주관청이 요구하는 바에 따라 이러한 경보를 수신한 해당기관은 선박의 주관청 내에 있는 해양보안에 책임이 있는 기관, 그 선박이 현재 운항하고 있는 인근 연안국(들) 또는 기타 협력당사국정부에 통보해야 한다.

- SSAS의 사용결과 및 작동 개시점의 위치는 주관청에 통의한 선박보안계획서에 표시되어야 한다.

- SSAS는 SOLAS 제4장에 적합하게 설치된 무선설비를 이용하거나 기타 일반 통신을 위하여 제공된 무선통신장치 또는 전용 무선통신장치를 이용할 수 있다.

- 일반사항

- SSAS는 결의 A.694(17)에 규정된 일반요건에 적합하여야 하며, 부가하여 이 성능기준에 적합해야 한다.

- 전원공급

- SSAS가 선박의 주관으로부터 전력을 공급 받을 경우 부가적으로 대체 전력공급으로부터 그 장치를 작동할 수 있어야 한다.

- 작동 개시점

- 작동 개시점은 항해선교와 기타 다른 위치에서 사용될 수 있어야 하며, 주관적인 조직으로부터 보호되어야 한다. 그것은 경보조작을 하기 위하여 사용자가 통합장치(seals)를 제거하여야 하거나, 두명(lids) 또는 커버를 깨어내야 하는 동작이 필요 없어야 한다.

- 작동

- 작동 개시점은 무선통신장치를 작동시켜 보안 경보를 송신하되 제어부트닝, 작동모드 설정 또는 메뉴선택과 같은 어떠한 무선통신장치의 조정을 필요로 하여서는 안된다.

- 작동 개시점의 작동은 본선에 어떠한 경보음이나 표시의 발생을 야기하여서는 안된다.

- SSAS의 작동은 GMDS의 설비의 기능성을 저하시켜서는 안된다.

- 보안정보의 송신

- 어떤 경우에도 보안정보장치 작동 개시점에 의하여 송신을 개시할 때 그 경보가 GMDS의 조난경보장치에 따라 발생된 것이 아니라면 그 경보를 유일한 코드 또는 신호가 포함되어야 한다. 그 송신정보에는 송신일자 및 시간과 함께 발 bey식별번호 및 현재의 위치가 포함되어야 한다. 그 송신정보는 육상국으로 전달되어야 하며, 선박국으로 전달되어서는 안된다.

- 선박보안정보장치가 작동되었을 때에는 그 장치를 고거나 원상 복구될 때까지 선박보안정보가 계속되어야 한다.

- 시험

- SSAS는 테스트가 가능하여야 한다.

2.2 SSAS 구성

SSAS 구현 방법은 SOLAS 제4장에 적합하게 설치된 무선설비(GMDS 등), 기타 일반통신을 위하여 제공된 무선통신장치(위성망 등), 그리고 전용 무선통신장치로 구성할 수 있다.

아래의 그림은 위성을 이용한 SSAS 통신망 구성을 나타낸다.

(그림 1) SSAS 구성도(위성이용)

현재 IMO에서는 권고하고 있는 SSAS 규격에 일치하는 상용화 제품은 대부분 InMARSAT 위성이 사용하고 있으며, IRIDIUM, ORBCOMM등 위성을 사용한 제품이 대부분이다.

InMARSAT 위성을 사용한 SSAS는 InMARSAT C 서비스 혼란이나 InMARSAT D, InMARSAT mini-C등을 사용한 제품들도 상용화되고 있다. 국내에서는 SARACOM이 InMARSAT C를 이용한 SC-20/SC-25 SSAS를 판매하고 있다. 삼영이렌즈의 경우는 COSPAS SARSAT를 사용한 SSAS를 개발하고 있다.
2.3 위성에 의한 SSAS 통신방 구성

그림 2. 위성의 종류

2.3.1 Inmarsat에서 SSAS 구현
IMO에서는 기존의 GMDSS장비를 사용하지도 SSAS를 구현할 수 있도록 합의하였다. 이를 위하여 Inmarsat은 CN137(Change Notice 137)에 따른 Inmarsat C SDM(System Definition Manual)을 수용했다. 이 수용을 통해서 GMDSS 능력을 갖는 mini-C나 자체형 CN137 적합 SSAS장비를 구현할 수 있다. 이 수용은 2003년 12월초에 발표된 것으로 이루어졌다. 그러나 Inmarsat C나 mini-C 보안 경보(security alarm)를 지원하는 완전한 운용은 2003년 12월말에는 가능하였다.

CN137 수용은 모든 Inmarsat C 용량 지구국에서의 필수적이며 Inmarsat C와 mini-C 이중 지구국에서는 선택적이다. 이중 지구국에서 선택적으로 수용해야 하는 이유는 아래와 같다.

- 일부 제조업자가 현재 Inmarsat C 모델을 택도 검색해서 제공할 수 없다고 결정할 때
- 일부 제조업자가 더 이상 Inmarsat C 이중 지구국 장비의 하트웨어 및 소프트웨어 업그레이드를 지원하지 않을 때
- GMDSS Inmarsat C와 mini-C 이중 지구국의 SSAS로 수용하기 위해서는 두 개의 버튼, 필요한 배선, 인터페이스, 소프트웨어 업그레이드를 제공해야 한다. 일부 제조업자는 Inmarsat CN137에 적합하고 조난경보(distress alarm) P3(Priority-3)를 사용하는 자체 SSAS를 제공함.

이 장비로부터 보안경보는 조난경보와 동일한 우선권을 갖는 Inmarsat P3로 수신된다. 이는 GMDSS에서 해적이나 무장 공격이 이미 사용되고 있는 경향이다. CN137 수용은 이러한 상황 하에서 응답화 작동되도록 한다. 모든 P3 경보는 Inmarsat C나 mini-C 이중 지구국의 신호채널을 사용한다.
Inmarsat C나 Inmarsat mini-C의 GMDSS 가능 사용 대신에 SSAS 기능을 제공하기 위해서 메시지 기능을 사용할 수도 있다. SSAS를 위한 이러한 Inmarsat C와 Inmarsat mini-C 사용은 소프트웨어를 응용해서 할 수 있으며 메시지 채널을 사용해야 한다. 이 방법은 보안경보를 위해서 우선권이 인정되지 않으나, GMDSS 기반을 사용하지 않고므로 무의식이다. 하지만 경보를 동시에 여러 곳으로 전달할 수 있는 주요 할당 등 많은 유연성을 제공한다.

Inmarsat CN137은 일차 루핑이 항상 보안경보를 수신하는 용량 지구국 외부 해상구조조정센터 (MRC)이어야 할 것을 가정하고 있다. 이것은 현재 GMDSS 조난과 동일한 것이다. 하지만 일부 국가(Flag State) 수용은 CN137 앞호화 경보 처리를 위한 설계적지정하지 않았으며 이러한 설계가 정해질 때까지 CN137 앞호화 경보 수신을 거절한다고 발표하였다.

Inmarsat C 단말기와 통신방은 투명 문제가 해결되는 데로 CN137를 지원하게 될 것이다. 또한 Inmarsat은 CN137이 2004년 7월 1일 이전에 운용되도록 할 것이다.

Inmarsat은 Inmarsat C 제조업자들에게 CN137 기능을 통해서 보안경보 메시지 능력을 구현하도록 권고하고 있다. 이것은 Inmarsat C CN137 보안경보의 신뢰성과 Inmarsat C 메시지 유연성 결합에 사용자의 특성에 따른 SSAS 해결책을 제공할 수 있다.
메시지 능력은 수용안이나 선수에 의해 정관의 의의 목적에 따라 사전 포맷된 보안경보 메시지를 수신할 수 있도록 한다. 이것은 롱, 러브, e-mail, GSM(Global System for Mobile communications) SMS(Short Message Service) 또는 메시지를 통해 이루어지며 MRCC에 연결된 Inmarsat 용량 지구국이 항상 선장의 해적이나 테러 사고가 있는 경우에 고지될 수 있도록 CN137 보안경보 기능을 수행하게 된다.

선박에서 SSAS의 의무적 탑재 일자는 2004년 7월 1일이다. 미국과 같은 나라에서는 2004년 7월 1일까지 ISPS(International Ship and Port Facility Security) 코드에 완전히 적합하지 않으면 그들의 수용으로 들어오지 못하도록 하고 있다. ISPS코드에 적합하기 위해서 선박은 IMO 시행일까지 완료되어야 한다. Inmarsat은 ISPS 코드에 대한 책임 기관이 아니며, ISPS코드에서 요구한 요소 중 일부인 보안경보 기능을 갖는 장치(SSAS)를 구현하기 위한 위성망 제공 및 관리를 하고 있으므로 ISPS 구현에 대한 자세한 설명은 자국 주관청으로부터 받아야 한다.
2.3.2 COSPAS-SARSAT에서 SSAS 구현

Cospas-Sarsat은 수색 및 구조에 도움을 주기 위한 조난 경보 및 위기 메시지를 제공하기 위해 설계된 위성 시스템이다. 이 시스템은 406MHz나 121.5MHz를 사용하는 조난 비이콘(Beacon) 신호를 검출하고 위치를 찾는 위성장비를 사용한다. COSPAS-Sarsat MCC(Mission Control Center)는 의무적으로 해당 국가 수색조사 관계기관으로 조난 위치 및 이에 관련된 정보를 송신해야 한다.

Cospas-Sarsat SSAS는 최소한의 수신으로 만족하도록 2004년 7월 1일까지 시험과 구현을 완료할 예정이며 국가간 기관으로써 Cospas-Sarsat은 장기적으로 단말 사용자에게 무료로 서비스를 제공할 예정이다.

Cospas-Sarsat은 저제도위성과 정지위성에 강력한 경보 기능, 신뢰 있는 통신 링크를 통한 자동화된 데이터 분산, 국가 공공기관에 의한 비인속 소유 정보 등을 정화, 신뢰성 있는 운용을 위한 형식 공인 철자를 제공한다.

상세한 competent authorities 목록이 아직 공표되지 않고 있다. 선박보안정보를 위한 Cospas-Sarsat 시스템 사용을 결정하는 주관청은 SSAS 경보의 발신 방법을 일시적기 위하여 Cospas-Sarsat MCC와 검토해야 한다. 주어진 Flag State에 서비스하는 MCC는 문서 C/5 A.001, "Cospas-Sarsat Data Distribution Plan"에서 실행되어야 한다.

시스템 테스트는 선박보안정보를 처리하기 위한 MCC 소프트웨어 수정은 추후 이루어질 것이다. Cospas-Sarsat은 2004년 5월까지 406MHz SSAS 구현해서 시스템 테스트 시험을 수행할 예정이다.

2.3.3 ORBCOMM에서 SSAS 구현

ORBCOMM 시스템은 광대역이며, 빠른 방향 패킷 교환 데이터 통신 시스템이다. 간단한 단말기에서 관문 지구국간의 통신은 LEO Microstar 위성을 통해 이루어진다. ORBCOMM 관문 지구국은 dial-up, 전용화선 또는 인터넷으로 연결된다. ORBCOMM 시스템은 전세계 통신망을 관리하기 위한 Network Control Center (NCC)로 구성되며 중요한 구성 요소는 아래와 같다.

- Space segment : 36개 LEO 위성
- Ground segment : 관문 지구국(Gateway Earth Station), 방송용 센터(Gateway Control Center)
- Subscriber segment : ORBCOMM System 단 링기

(그림 4) Cospas-SARSAT 위성망

(그림 5) ORBCOMM 위성망

2.4 국내의 기술기준 및 표준화 동향

2.4.1 국제 기술기준 동향

미국의 경우에 해당 주관청은 해안경비대 NVIC(Navigation and Vessel Inspection Circular) 04-03의 별첨 5에서 선박보안정보장치에 대한 기술을 규정하고 있다.

미국에서는 Competent Authority를 해안경비대나 선주회사 또는 지정기관으로 정할 수 있다. 선주회사나 지정기관으로 정할 경우에는 24시간 동안 계속 근무해야 하며, 경보 수신 시 즉시 Alameda에 위치한 해안경비대 RCC로 경보신호를 전달할 수 있어야 한다.

SSAS 무선설비는 FCC 관련 기술기준에 적합해야 한다. 기존 무선설비를 수정해서 SSAS로 사용하는 경우에도 FCC의 승인을 반드시 받아야 한다. 일본의 경우에 기술기준은 2004년 3월 17일에 개정한 'SSAS 요건에 관한 고시'에 규정하고 있다.

이 고시에는 전파법 시행 규칙 규정에 기관의 선박보안정보장치의 요건을 규정하고 2004년 7월 1일부터 시행할 것을 규정하고 있다.

2.4.2 국내 기술기준 동향
국내의 SSAS 관련 범위는 정보통신부와 해양수산부가 IMO 관련 회의의 진행과 방향에 따라 제정 중이 있다. 국방적으로도 해상 무선설비의 경우, 기능 및 성능에 관계없이 규제는 IMO에서 제정되며 ITU-R에서는 기능 및 성능 요구사항에 적합한 세부적인 기술적 사항을 권고하고 있다. 또한 상호 호환, 신뢰성 시험 등 세부적인 표준화가 요구되는 무선설비인 경우에 ISO/IEC에서 관련 표준을 제정한다.

SSAS는 2004년 7월 1일부터 적용되는 선박에 탑재되어야 하며, 탑재되지 않을 경우에는 미국, 일본 등 일부 국가에서는 입항을 거부하는 등 경력한 제재를 예고하고 있다.

국내에서도 세계적인 추세에 반복해서 해양, 공해, 무해의 피해를 초래하지 않도록 정보통신부와 해양수산부가 IMO에 적극 참여해서 SOLAS 조약 시행을 준수하는 관련 법규를 시행 일정에 맞게 제정해야 한다.

해양수산부는 IMO SOLAS XI-2/6 규칙 및 MSC.147(77) 결정에 규정된 SSAS 기능 및 성능 요구사항을 신속한법정 등에 관련 법규를 마련하고 있으며, 정보통신부는 IMO SOLAS XI-2/6 규칙 및 MSC.147(77) 결정에 규정된 SSAS 기능 및 성능 요구사항을 기본으로 해서 국내 관련 법정 군사 및 ITU-R 관련, 그리고 ISO/IEC의 해상무선설비 시험방법 표준 등을 분석해서 관련 기술기준 제정을 준비하고 있다.

III. 결론

선박 외국에서는 이미 SSAS의 일반적인 조건과 성능조건인 SOLAS XI-2/6과 MSC.147(77) 규정을 적용하여 기존 위성 서비스를 이용하도록 하는 기술기준을 제정하고 있다. 따라서 우리나라도 SOLAS XI-2/6과 MSC.147(77) 규정을 근거로 하고 기존 위성 무선설비의 기술기준을 기술적 조건으로 하여 기술적 제한을 하는 것이 바람직하다.

기술기준은 일반적인 조건에서 IMO 관련 규정, 필수적인 요구사항(SOLAS XI-2/6) 그리고 성능 표준(MSC.147(77))을 포함한다.

기술적 조건에서는 무선청취 기술기준(ITU-R 권고 등)을 포함해야 한다. 이 경우 국내 기존 위성무선설비 기술기준인 인마서트 무선설비, EPIRB 무선설비 그리고 위성휴대통신용 무선설비 등에 관련된 규정을 포함해야 한다.

또한 SSAS는 해상장비이므로 신뢰성에 대한 시험 관련 규정(ISO/IEC 60945 규격)이 포함되어야 한다. 이 규정은 해상장비의 공동 요구사항 (행식정점)이며 무선설비를 포함한 모든 해상/항공 전자장비에 필수적으로 적용할 것을 ITU 무선 규정(RADIO REGULATION)에서 규정하고 있다.

2004년 제3차 IMO 회의의 결의에 따라 2004년 7월 1일부터 SSAS의 선박 탑재를 의무화하여 미국 등 선진국에서는 SSAS에 대한 일반 규정인 SOLAS XI-2/6과 성능 조건의 IMO MSC.147(77) 결정을 근거하여 각국의 SSAS 기술기준을 제정하고 있다. 이에 따라 우리나라의 해양수산부도 이에 따라 같은 SSAS의 운용 및 성능 요구사항을 규정하였기에 정보통신부는 SSAS에 대한 조속한 국내 기술기준을 마련하여 2004년 7월 1일부터 시행되는 SSAS 의무 탑재 규정이 필요하다.

참고문헌

[3] IMO, RESOLUTION MSC.136(76), PERFORMANCE STANDARDS FOR A SHIP SECURITY ALERT SYSTEM, 2002
[5] COSPAS-SARSAT, INTRODUCTION TO THE COSPAS-SARSAT SYSTEM C/S 003, October 1999
[7] IEC 60945, Maritime navigation and radiocommunication equipment and systems - General requirements - Methods of testing and required test results, 2002