DWDM 채널 레벨 컨트롤러 설계 및 구현

영진수*, 이규성**, 하창우*
*목원대학교 IT 공학과 **대천대학교 컴퓨터공학

DWDM Channel Level Controller Design and Implementation

Jin-su, Yeom* · Kyu-chung Lee* · Chang-Wu Hur*
*Mokwon University, **Daechoon College

요 약

채널 레벨 컨트롤러는 DWDM(Dense Wavelength Division Multiplexing) 방식의 OXC(Optical Cross Connect), OADM(Optical Add/Drop Multiplexer), 광 증폭기(EDFA : Erbium Doped Fiber Amplifier) 등의 시스템에서 채널별 광신호의 세기를 조절하여 시스템의 신뢰성을 높이는 중요한 역할을 한다. 본 논문에서는 12채널 VOA(Variable Optical Attenuator) 4개를 사용하여 40채널의 광 신호 레벨을 제어할 수 있는 컨트롤러를 구현하였다. 각 채널의 광 신호 레벨을 제어하는데 하나의 마이크로프로세서가 5개의 채널을 제어하고 총 8개의 마이크로프로세서로 40채널의 분산 제어하도록 구성하였다. 또한 외부 통신을 하고 사용자로부터 명령을 각각의 마이크로프로세서에 전달하기 위한 마이크로프로세서를 추가하였으며, 출력되는 광 신호의 세기를 측정하여 VOA를 제어하는데 있어서 VOA 출력에서 바로 PD(Photodiode)로 입력하여 AWG(Arrayed Waveguide Grating) 출력에서 광 신호를 다시 분파하여 PD에 입력하는 빌게이트를 개선하였다.

1. 서론

오늘날 인터넷은 일반화되고 PC에 의한 다양화, 단말기(휴대전화, PDA 등)로 확산됨으로써 이에 따르는 정보의 비약적인 증가로 정보 전송에의 확대가 시급해지고 있다. 이를 해결하기 위해서는 일반적으로 두 가지 방법이 있다. 하나는 전송로를 신설하는 것이 다른 하나는 기존 전송로를 최대한 활용하는 방법이다. 하지만 전송로 일부에 발생한 시간과 비용의 증가 때문에 기존 전송로의 활용을 높여 당면된 과제를 대응해야 하며 또한 빠른 시설 내에 해결해야 한다. 기존 전송로의 활용을 높이는 수단으로 1개의 광신호에 다양한 파장의 광 신호를 다중 전송할 수 있는 DWDM 시스템이 보급되고 있다. 이러한 DWDM 전송에 목 필요할 부분이 VOA와 AWG이다. VOA는 전송로 상에서 발생하는 레벨 분산을 보정하는 부분이며, 전송로 특성을 고려한 선행자의 레벨을 보정한다. AWG는 1개의 광신호에 여러 파장의 광 신호를 다중전송하기 위해 선행자의 파장마다 합하여 다중본파하는 부분이다. 이들 단독으로 시스템에 적용될 수 있으나 DWDM 시스템의 채널이 증가함으로써 다수의 광신호를 접속해야 하는 등 여러 가지 빌게이트로 작업이 발생되었으며, 또한 사이즈의 콤팩트화 등의 요구가 높아져 해결적으로 DWDM 채널 레벨 컨트롤러가 필요하게 되었다.[1] 이는 DWDM방식의 OXC, OADM, 광 증폭기 등의 시스템에서 채널별 광신호의 세기를 조절하여 시스템의 신뢰성을 높이는 중요한 제어기이다. 본 논문에서는 12채널 VOA 4개를 사용하여 40채널의 광 신호 레벨을 제어할 수 있는 컨트롤러를 구현하고자 한다. 각 채널의 레벨을 제어하는데 있어서 속도와 컨트롤러의 간소화를 위하여 하나의 마이크로프로세서가 5개의 채널을 제어하고 총 8개의 마이크로프로세서로 40채널을 분산 제어하도록 구성하였다. 또한 외부 통신을 하고 사용자로부터 명령을 각각의 마이크로프로세서에 전달하기 위한 마이크로프로세서를 추가하였다. 외부 통신 방식은 RS-232 시리얼 통신이다. 일반적으로 출력 광 신호 레벨을 조절하기 위해서는 [그림 1]과 같이 AWG 출력 단에서 광을 99:1로 분리하여 다시 채널별로 파장별로 나누어 PD에 입력하여 출력되는 각 채널의 광 신호 레벨을 조정한다.[2] 하지만 본 논문에서는 VOA 출력에서 바로 PD로 입력하여 추가적인 부품의 소요를 줄였으며, AWG에 의한 출력 광 신호의 레벨변화를 미리 VOA를 제어할 때 보정하여 제어하는 방법을 시도하였다.
II. 채널 레벨 컨트롤러 구성

[그림 2] 구현된 채널 레벨 컨트롤러 구성도

1550nm 파장에서 최소 0.75 A/W의 Responsivity를 보장한다. 광 신호의 세기에 따라 PD에 호르는 전류

[그림 3] 전압에 따른 VOA 감쇠량

를 전압으로 변환하기 위하여 Analog Device사의 AD8305 로그앰프를 사용하였다. 최대 -30dB까지 감쇠를 목표로 하기 때문에 일반 Linear 앰프로부터 PD로 호르는 전류를 전압으로 변환할 때 낮은 빈위를 측정할 수 없다.[그림 4]는 구현된 PD 앰프의 회로이다. 이 회로를 가지고 입력 광 신호의 세기에 따른 출력 전압의 변화량을 측정한 결과를 [그림 5]에 그래프로 나타내었다. 그래프에서 알 수 있듯이 입력 광 신호의 세기가 1dBm 변할 때 출력 전압이 약 20mV씩 선형적으로 변환을 알 수 있다. 다만 사용되지는 저항 값의 오차 등으로 Offset 전압이 발생한다. 이는 초기에 파워매트로 측정하여 그 차를 Calibration Factor로 저장하여 보상한다. 이 변환된 전압은 12Bit ADC를 통해 마이크로프로세서로 입력된다. 입력된 전압은 마이크로프로세서에서 dBm으로 변환된다. 변환은 시스템 초기 셋업시에 AWG를 통과한 광 신호를 가지고 Calibration 과정을 거쳐 만들어진 Factor를 가지고 계산하게 된다. 이렇게 해서 AWG 출력 단에서의 광 신호 레벨을 보정하였다. 하지만 이 방법은 가장 기본적인 방법으로 어느 정도는 보정할 수 있지만 정확한 방법은 아니다. AWG는 채널 간에 영향을 주기 때문에 각 채널들의 Add/Drop되었을 때와 같은 여러 가지 요인에 대해
서도 고려되어야 한다. 마이크로프로세서 내부에서 변환된 dBM 값을 사용자가 설정해 놓는 값과 비교하여 값으로 세이 한다.

![그림 8] 입력 광 신호 세기에 따른 PD 앱프 회로 출력 전압

III. 인터페이스 구성

IV. 결론

본 논문에서 12채널 VOA 4개와 AWG를 이용하여 40채널의 광 신호 레벨 제어할 수 있는 컨트롤러를 구현하고자 하였다. 채널 수가 증가함에 따라 이들을 유연하게 제어하고 일정한 출력 값을 얻기 위해서는 복잡한 알고리즘이 요구되었다. DWDM 시스템에 적용하기 위해서는 상당한 속도와 풀팩트한 사이즈가 요구된다. 하지만 현재는 VOA, 스위처, AWG, PD등을 별개의 부품으로 사용하여야 한다. 이에 따라 이들을 연결하기 위한 파이버를 인하여 상당한 사이즈로 커질 수밖에 없다. 정적 부분이 개발한다면 사이즈를 상당히 축소할 수 있을 것이다. DWDM용 채널 레벨 컨트롤러는 시스템의 여러 부분에서 필요로 하는 장치이기 때문에 계속적으로 연구되어야 할 부분이며, 부분 개발과 제어기 개발이 병행되어야 할 것이다.

참고문헌