요약

정합장처리는 음파를 이용하여 해양환경 변수와 표적의 위치를 추정하는 신호처리 기법을 말한다. 이를 연구하기 위하여 2003년 10월, 2004년 5월과 10월 동 3차례에 걸쳐 음향실험을 실시하였다. 동해시 앞의 수심 100~150m 해양환경의 해양 변수와 표적 센서를 설치하고 거주부위에 음항실과, 트로그레이퍼 음향방사기를 이용하여 음향 신호를 획득하였다. 측정된 해양 변수와 음향 변수와 표적 센서의 위치에 대한 지향량 테이터 베이스를 이용하여 일차적으로 음항의 위치 및 지향 변수를 추정하는 분석을 실시하였다. 국방과학연구소, 한양대학교, 서울대학교가 참여한 공동실험은 앞으로 3차례 더 실시할 계획이다.

1. 서론

정합장처리(Matched-field processing)는 관측된 음향신호와 음향모델로 계산된 음향을 비교하여 음울의 위치나 해양변수를 추정하는 신호처리 기법이다. 정합장처리는 방위 정보만을 제공하던 기존의 원형과 비원형 처리(Plane wave beamforming process)에 비하여 표적의 위치에 대한 보다 구체적인 정보 즉, 거리와 수심 정보를 제공하는 면에서 전사적인 관할을 유발 시켰으며, 음울의 위치를 미리 아는 경우에는 환경변수를 추정하는 기술로 이용되어 학문적인 관심이 대두되었다. 70년대 말에 제안된[2] 정합장처리 기법은 미국을 중심으로 80, 90년대에 이르는 문학적 보완과 다수의 실험이 거쳐면서 환경변수 추정 측면에서는 실질적 기술단계로 접어들었으며 위치 추정 측면에서는 연산속도 문제, 불확실한 환경정보에서 유발되는 오정확 문제, 시스템 효율성 문제 등으로 아직은 연구 단계에 머물고 있다.

국방과학연구소는 한양대학교, 서울대학교와 공동으로 정합장처리 기술 개발을 위하여 MAPLE (Matched Acoustic Properties and Localization Experiment)라는 음향실험을 실시하고 있다. 실험의 주안점은 해양 변동성이 강하고 선박 동행이 빈번한 한반도 동해에서 건설한 정합장처리의 가능성을 파악하는 것이다. 본 논문에서는 그 실험 내용을 간략히 기술하였다.

2. MAPLE

MAPLE는 전해환경에서 음파를 이용하여 수중 표적의 위치를 추정하는 기술 개발에 필요한 해양 및 음향자료를 획득하는 것을 목적으로 하고 있다. 관측된 자료를 이용하여 전해환경의 음과변란에 큰 영향을 미치는 지음향특성과 시공간적인 해양변동을 분석하는 것을 우선적으로 실시하고 있다. 지금까지 2003년 10월, 2004년 5월과 10월 세 차례에 걸쳐 동해의 대륙붕 지역에서 국방과학연구소의 RV 선호로 이를 이용하여 음향 자료를 획득하고 같은 시기에 주변 해역에 대한 해양환경 조사를 실시하였다.

음향 신호 수신을 위하여 20세대의 수직 선배열 음향 센서를 배치하였는데 표층 바이에서 RF로 전송된 음향 신호를 선호로에서 디지털 녹음기에 기록하였고 여러 개의 SBE39 시스템을 선배열 케이블에 장착하여 수직 선배열 음향센서의 수중 변동을 모니터링 하였다. 또한 해양환경 변동을 조사하기 위하여 다수의 수온 선배열

~ 377 ~
(Thermistor Chain)을 계류하고 선전호에서 측정된 CTD, XBT차로 이외에 서울대학교의 ESROB (East Sea Real-time Ocean Buoy)에서 수신된 해류 및 운도 자료가 분석에 사용되었다(그림 1).

그림 1. MAPLE 해상장비 설치 모습도

수중 표적 모형을 위하여 Sound Trak II와 LFHUSS (Low Frequency High-power Underwater Sound System)를 음원으로 이용하였으며(그림 2), 지음향 역산(Geoaoustic Inversion)을 위하여 한양대학교에서 제작한 전구 발사기로 저주파 펄스 신호를 발생시켰다. 또한 400Hz 대역의 토토그래피 음원을 해저에 계류하여 해양변동에 따른 음과 전달의 변화를 살펴보았다(그림 3).

그림 2. 저주파 펄스 음원 (LFHUSS) 투하 장면

3. 실험 자료

MAPLE을 통하여 관측된 수온, 억류 자료는 음속으로 변환하여 음과전달 모델의 입력 자료로 이용하며 그 변화는 음과전달의 시공간적인 변화를 살펴보는데 이용하였다. 예를 들어 수직 선배열 음향센서에 부착된 SBE39로 관측된 수온과 수심 변화를 살펴보면 관측 기간 동안 선배열 센서의 수심변화는 미약한 반면 3km 측에서는 내부파에 의해 최대 10도 이상의 변화를 보이고 있다(그림 4). 같은 시간에 관측된 토토그래피의 수심 신호 변화를 살펴보면 해양변동이 음과전달에 미치는 영향을 분석하였다.

그림 3. 400Hz 토토그래피 음원 회수 장면

그림 4. 수직 선배열 센서에 장착된 3개의 SBE39로 측정된 수온 및 수심 변화

그림 5는 수직 선배열 음향센서로 수신한 저주파 음원의 신호를 스펙트로그래프로 나타낸 것이다. 주파수별 토평 성분과 GPS로 관측된 음원의 위치를 이용하여 저음향 변수(음속, 밀도, 음과의 개념, 릴랙스 투과조)를 추정하는데 이용하였다. 추정된 저음향 변수는 음과전달 모델의 입력 자료로 이용하여 음원 위치(수심, 거리)를
분석하는데 이용하였는데 약 6km 거리의 음원을 성공적으로 추적하였다.

그림 5. 수직 선배열 음향센서로 수신한 저주파 에인 음원의 신호

그림 6은 수직 선배열 음향센서로 수신한 전구음원의 폭스 신호를 나타낸 것이다. 다양한 경로를 통한 음과 전달의 영향으로 여러번의 신호가 중첩되어 수신 되었다. 시간에 따른 폭스 신호의 크기 및 위상 변화를 이용하여 지음향 변수를 추정하는데 이용하였다.

그림 6. 수직 선배열 음향센서로 수신한 전구 음원의 폭스 신호

그림 7은 정합성 처리를 하여 구한 음원의 위치 추정 결과이다. 음원은 거리 3.8km, 수심 63m에 위치하였고 7개의 CW(Continuous Wave) 신호를 방사하였다. 위치 추정 결과 음원 위치에 주변의 부영에 비하여 약 4dB 이상의 차이를 보이는 주변이 나타남을 확인 할 수 있다. 다소 규칙적으로 나타나는 부영은 음파전달 특성에 기인한다.

그림 7. 7개의 토날 성분을 이용하여 추정한 정지 음원의 위치

그림 8은 에인 음원에서 방사되는 7개의 CW 신호를 정합성 처리한 결과이다. 최대의 빌 출력이 나타나는 수심을 따라 시간에 따른 이동 표적이 제출된 위치 추정 결과이다. 그림에서 보듯이 정합성 처리 결과는 약 2km에서 6km까지를 투영한 추적을 나타내고 있다. 주변에 나타나는 부영의 크기가 주변의 크기와 비슷하다 음원의 이동에 따른 연속성을 고려하면 주변의 부영의 차이를 구분 할 수 있다. 이는 또한 선배열 센서의 수를 증가 시키거나 처리하는 주파수 폭을 넓혀서 주변 대 부영의 차이를 줄여 시킬 수 있다.

그림 8. 7개의 토날 성분을 이용하여 추정한 에인 음원의 위치

- 379 -
4. 결론

정합장처리 기술 개발을 위하여 지금까지 3차례에 걸친 응향실험을 실시하였다. 관측된 해양 및 응향 자료는 지율항 변수 역산과 해양 변동을 살펴보는데 일차적으로 이용하였으며 추정된 환경변수를 이용하여 응원의 위치 추적을 성공적으로 수행하였다. 앞으로 MAPLE은 3차례 더 실시할 계획에 있다.

참고문헌


