생체인식 소프트웨어의 평가모듈을 위한 XML 스키마 설계

운영미*, 황석형**, 양해술*
호서대학교 인도전문대학원
선문대학교 컴퓨터정보학부
e-mail: 770mi@hanmail.net

XML Schema Design for Evaluation Module of Biometric Software

Young-Mi Yoon*, Suk-Hyung Hwang**, Hae-Sool Yang*
*Graduate School of Venture, Hoseo University
**Sun-Moon Univ. Div. of Computer & Information Science

요 약

최근 생체인식 분야는 IT 분야의 보안기술과 함께 빠르게 전진되어 왔으며, 현재 생체인식의 중요성이 인식되면서 국내외 생체인식 소프트웨어 시장이 급격히 증가하고 있는 추세이다. 이에 따라 생체인식 소프트웨어의 품질에 대한 평가가 요구되고 있으며, 생체인식 소프트웨어의 품질시험과 평가를 위한 기준으로 평가모듈(Evaluation Module)이 도입되어야 한다. 또한, XML(eXtensible Markup Language)은 네트워크와 인터넷간 교환되는 정보를 명시하기 위한 언어로 데이터 교환과 공유에 대한 표준으로 그 유효 영역이 확장되어 적용되고 있다. 본 논문에서는 ISO/IEC 9126과 ISO/IEC 12119를 기반으로 생체인식 소프트웨어에 적합한 품질평가 체계를 위해 XML 스키마를 제안하였다. 실제 생체인식 소프트웨어의 평가모듈(EM)에서는 제안한 XML 스키마를 통해 유효성을 검사한다.

1. 서론

작용된 생체인식 기술별로는 지문인식 관련업체가 전체 약 40%로 다수를 점하고 있으며, 얼굴-음성-홍채 분야가 그 뒤를 잇고 있다. 따라서 생체인식 소프트웨어는 다양한 생체인식 분야의 사용자 요구를 수용할 수 있어야 하며, 생체인식 소프트웨어의 품질향상 및 신뢰성 높은 소프트웨어 개발을 유도하도록 해야 한다.

본 논문에서는 생체인식 소프트웨어의 특성을 명확히 분석하기 위해 소프트웨어 품질특성 체계인 ISO/IEC 9126과 파키지 소프트웨어 품질시험 기준인 ISO/IEC 12119를 기반으로 생체인식 소프트웨어의 품질특성을 분석하였으며, 생체인식 소프트웨어의 시험·평가를 위한 평가모듈을 도출하였다. 그리고 평가모듈의 각 평가항목을 효율적으로 공유하고 교환할 수 있도록 XML을 이용할 경우, 평가모듈의 유효성(validity) 검증을 위해 스키마를 설계하였다.

본 논문의 구성은 다음과 같다. 1장에서는 관련 연구 플러스 2장에서는 생체인식 소프트웨어의 평가모듈의 체계에 대해 설명한다. 4장에서는 생체인식 소프트웨어의 품질평가를 위한 품질특성과 평가항목의 스키마를 설명하고 마지막으로 5장에서는 결론을 내린다.

2. 관련 연구

2.1 ISO/IEC 12119

소프트웨어의 일반적 품질 요구사항에 대한 국제 표준인 ISO/IEC 12119는 제품소개를 위한 설명서의 품질적 여부를 판별하는 제품설명서의 제품설명서와 제품사용자용을 위한 메뉴얼 내용의 품질적 여부를 판단하는 사용자문서 그리고 기능, 성능 및 범위의 오류방
지 등의 품질적 여부를 판별하는 실시 프로그램의 3가지 품질특성으로 나누어 볼 수 있다.

2.2 ISO/IEC 9126

<표 1> ISO/IEC 9126의 품질특성과 부특성

<table>
<thead>
<tr>
<th>부문특성</th>
<th>원활한 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>기능성</td>
<td>직접성, 정확성, 산출물품질, 보안성, 기능순수성</td>
</tr>
<tr>
<td>신뢰성</td>
<td>성숙성, 전문가용성, 품질, 신뢰성, 신뢰성수준</td>
</tr>
<tr>
<td>사용성</td>
<td>이해성, 편의성, 희망성, 친용성, 사용자수용성</td>
</tr>
<tr>
<td>효율성</td>
<td>시간 사용성, 자원 효율성, 효용성수준</td>
</tr>
<tr>
<td>유지보수성</td>
<td>분석성, 변경성, 안정성, 시장성, 보수수용성</td>
</tr>
<tr>
<td>이성성</td>
<td>적용성, 신뢰성, 공정성, 대응성, 이성수용성</td>
</tr>
</tbody>
</table>

3. 생체인식 소프트웨어의 평가모드의 체계

생체인식 소프트웨어는 일반 소프트웨어와는 다른 여러 특성을 가지기 때문에 생체인식 소프트웨어의 품질시험 및 평가를 위해서는 이러한 차이점을 명확히 이해하고 수용하여 평가모드의 개발에 적용해야 한다. 본 연구에서 구축한 생체인식 소프트웨어의 평가모들은 품질특성과 부특성, 각 부특성을 검증하기 위한 평가항목으로 구성되어 <표 2>와 같다.

<표 2> 생체인식 소프트웨어의 평가항목

<table>
<thead>
<tr>
<th>평가항목</th>
<th>특성</th>
<th>평가항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>일반적 요구사항</td>
<td>식별 및 표시</td>
<td>설계규정 제도, 하위시스템 집합 여부</td>
</tr>
<tr>
<td>기능성</td>
<td>직접성</td>
<td>기능 정의 제공, 데이터 정의 제공, 사용 환경 병제 제공</td>
</tr>
<tr>
<td>정확성</td>
<td>기능 정의 제공, 데이터 정의 제공, 사용 환경 병제 제공</td>
<td></td>
</tr>
<tr>
<td>연계성</td>
<td>데이터 정의 제공, 데이터 정의 제공, 사용 환경 병제 제공</td>
<td></td>
</tr>
<tr>
<td>상호운영성</td>
<td>데이터 정의 제공, 데이터 정의 제공, 사용 환경 병제 제공</td>
<td></td>
</tr>
</tbody>
</table>

각 평가항목의 내용은 다음과 같다.

1) 개념: 메트릭의 개념, 측정목적, 메트릭의 범주, 용어 설명 등을 기술한다.
2) 적용범위: 적용 대상 및 필요 자원, 적용가능한 시험 기법, 적용시 고려사항 등을 기술한다.
3) 참조문헌: 메트릭이 도출된 관련문헌을 기술한다.
4) 메트릭: 측정항목, 측정방법, 계산식을 기술한다.
5) 적용절차: 메트릭 적용을 위한 상세 절차를 기술한다.
6) 결과해석 및 보고: 측정치의 해석, 보고사항 등에 대해 기술한다.

이러한 평가모들은 토대로 시험규격서, 품질검사 테스트케이스(Test Case), 시험결과서가 도출된다. 이때, 평가모들의 구조나 내용변경시 관련된 시험규격서, 품질검사표, 테스트케이스, 시험결과서도 변경해야 한다.

최근 품질의 중요성은 다양한 분야에서 사용되며, XML의 이용(content)에 의미를 부여하여 사용자에게 자료를 보다 효율적으로 제공하고 효율화할 수 있는 구조적 문서로서 XML[6]이 각광을 받고 있다. XML은 문서의 내용과 스타일이 분리해서 기술하기 때문에 스타일만 바꾸게 되면 원래의 내용을 수정하지 않고도 동일한 내용에 대한 여러 가지의 스타일로 만들 수 있다. 또한, 플랫폼과 어플리케이션 종류에 상관없이 데이터 교환이 가능하고, 상호운용성이 뛰어나기 때문에 상이한 데이터 형태도 쉽게 변환가능하다. 따라서, 평가모들의 XML을 적용하면 내용뿐만 아니라 구조까지도 쉽게 변경할 수 있으며, 평가항목의 추가나 용이하기 때문에 작동진행의 효율성을 보장할 수 있다.

4. 생체인식 소프트웨어 품질평가의 기기로 설계

생체인식 소프트웨어의 평가모들은 XML을 이용하므로 XML 구문에 대한 유효성을 검사해야 한다. 유효한 문서(valid document)만 XML 문서가 스키마의 정의대로 올바르게 작성되었는지 검사하는 유
효성 검증(validating) 과정을 거치게 되는데, 스키마 가 있는 XML 문서를 검증을 파서(validating parser)를 사용하여 파싱했을 때 오류가 없는 문서를 말한다. 유효한 문서가 되기 위해서는 스키마 [7]에서 문서의 형 타입을 기술한다. XML을 이용한 평가모듈의 스키마는 내용(content)에서 사용되는 대 고를 정의한다. 또한, 스키마는 요소(element)와 에트리뷰트(attribute)로 구성되며, 요소들은 다른 요소를 포함할 수 있고, 어떤 요소는 에트리뷰트를 포함할 수 있다. <표 3>은 품질특성과 부속성에 대한 요소를 정리한 것이고, 그림 1은 <표 3>의 스키마 일부분을 나타낸 것이다.

<표 3> 품질특성과 부속성의 XML 태그

<table>
<thead>
<tr>
<th>요소</th>
<th>구분</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기능 ISO/IEC 15939의 품질특성과 부속성의 정의와 선정된 평가항목, 에트리뷰트를 관리</td>
</tr>
<tr>
<td>자세히</td>
<td><Characteristics>, <Sub-Characteristics></td>
</tr>
<tr>
<td><Characteristics></td>
<td>기능 6가지 품질특성을 분류하여 관리</td>
</tr>
<tr>
<td>자세히</td>
<td><Functionality>, <Reliability>, <Usability>, <Efficiency>, <Maintainability>*</td>
</tr>
<tr>
<td><Sub-Characteristics></td>
<td>기능 자 품질특성의 부분성을 분류하여 관리</td>
</tr>
<tr>
<td><Complexity></td>
<td>기능 시간, 성능, 유지, 확장, 사용자, 편의성, 도움말, 변경성, 안정성, 적응성, 재사용성, <Installability>*, <CoExistence>, <Replaceability></td>
</tr>
</tbody>
</table>

* 반드시 필요한 요소. * 선택 가능하거나 선택적인 요소

그림 1. Quality.xsd의 일부분

<표 4>은 생체인식 소프트웨어의 평가모듈 체계에 대한 스키마를 정리한 것이고, 그림 2는 <표 4> 스키마를 나타낸 것이다.

<표 4> 평가항목의 XML 태그

<table>
<thead>
<tr>
<th>요소</th>
<th>구분</th>
</tr>
</thead>
<tbody>
<tr>
<td><MetricSpec></td>
<td>기능 메트릭스의 선정된 평가항목들을 관리</td>
</tr>
<tr>
<td>자세히</td>
<td><Outline>+, <Application>+, <Reference>+, <Metric>+, <Process>+, <AnalysisReport></td>
</tr>
<tr>
<td><Outline></td>
<td>기능 메트릭스의 개발, 주요 목표, 메트릭의 정의, 품질의 방향, 전략의 방향</td>
</tr>
<tr>
<td>자세히</td>
<td><Concept>+, <Purpose>+, <Category>+, <Term>+, <Remark>*</td>
</tr>
<tr>
<td><Application></td>
<td>기능 적용 대상 및 필요 사항, 기법, 적용시 고려사항</td>
</tr>
<tr>
<td>자세히</td>
<td><ObjectReference>+, <Method>+, <Consideration>*</td>
</tr>
<tr>
<td><Reference></td>
<td>기능 참조 문서를 관리</td>
</tr>
<tr>
<td>자세히</td>
<td><Document>*</td>
</tr>
<tr>
<td><Metric></td>
<td>기능 측정 항목, 측정 방법, 계산식을 관리</td>
</tr>
<tr>
<td>자세히</td>
<td><Items>+, <Method>+, <Calculation>*</td>
</tr>
<tr>
<td><Process></td>
<td>기능 실행 절차를 관리</td>
</tr>
<tr>
<td>자세히</td>
<td><Detail>*</td>
</tr>
</tbody>
</table>
5. 결론 및 향후 과제

생체인식 소프트웨어의 메트릭(metric)을 적용하여 평가를 수행하는 과정에서 재판성 및 공정성을 확보하기 위해 각 메트릭 적용절차 및 기준 등을 명시한 평가모듈이 필요하다. 본 논문에서는 생체인식 소프트웨어의 시험·평가를 위한 평가모듈을 도출하였으며, 선정된 평가항목들을 효과적으로 공개하고 교환할 수 있도록 XML을 활용할 경우, 유호성을 검증하기 위해 ISO/IEC 9126와 ISO/IEC 12191을 기반으로 품질특성과 품질 부특성, 선정된 평가항목에 대해 스키마를 설계하였다. 제안한 스키마는 평가모듈의 구조 변경시 유연하고 확장가능하기 때문에 작업진행의 효율성을 보장할 수 있다. 또한, 생체인식 분야뿐만 아니라 특정 응용분야의 소프트웨어의 평가도구에 활용될 수 있을 것이다.

향후 연구추계는 본 논문에서 제안된 스키마를 기반으로 다양하게 표현할 수 있도록 여러 스타일시트(XML Stylesheet Language)의 적용에 관한 연구를 진행할 예정이다.

참고문헌

그림 2. MatricSpec.xsd