Abstract: This paper presents a novel method to speed up neural network (NN) based face detection systems. NN-based face detection can be viewed as a classification and search problem. The proposed method formulates the search problem as an integer nonlinear optimization problem (INLP) and expands the basic particle swarm optimization (PSO) to solve it. PSO works with a population of particles, each representing a subwindow in an input image. The subwindows are evaluated by how well they match a NN-based face filter. A face is indicated when the filter response of the best particle is above a given threshold. To achieve better performance, the influence of PSO parameter settings on the search performance was investigated. Experiments show that with fine-adjusted parameters, the proposed method leads to a speedup of 94 on 320×240 images compared to the traditional exhaustive search method.

Keywords: particle swarm optimization, evolutionary computation, face detection, INLP, neural network

1. INTRODUCTION

Fast and robust face detection is an important computer vision problem with applications to surveillance, multimedia processing, and HCI. Face detection is often formulated as a classification and search problem: a search strategy generates potential image regions and a classifier (filter) determines whether or not they contain a face. A standard approach is exhaustive search, in which the image is scanned in raster order and every \(n \times n \) window of pixels over multiple image scales is classified [1].

Neural networks have been proven to be a powerful tool to discriminate between face and non-face patterns when trained on a large number of examples. So far the most accurate detection performance has been obtained by using neural network-based methods [2, 3]. However, these methods are generally computationally expensive because: (a) the search window is a high dimensional vector that has to be classified in a very non-linear space; (b) there are hundreds of thousands of windows to search.

Although many efforts have been done to reduce the runtime of neural network based methods, most of them focused on reducing the computational complexity of classifiers such as using PCA to reduce the dimensionality of the input vector [4], using FFT to calculate neural activities efficiently [5], etc. Only a few attentions were given to improving the search efficiency. In Ref. [6], the search window moves every \(q \) pixels (\(q=3\sim 5 \)) instead of every pixel. Thus the number of searched windows is only about \(1/q^2 \) of the exhaustive search, but with the disadvantage of lowering the system’s performance. Many methods use skin color information to limit the search area [6, 7]. But color information is not always able to be used and it is very difficult to build a skin color model robust to illumination changes.

In this paper, to reduce computational cost while retaining high detection accuracy, we propose a new search method for neural network (NN) based face detection systems. The method is based on the idea that the face search (FS) problem can be formulated into an integer nonlinear optimization problem (INLP). The integer variables are parameters that represent a subwindow in an input image. The objective function is based on the output of a face filter.

PSO is a novel evolutionary computation (EC) technique [8], which has been improved and applied to various problems. Although the original algorithm was basically developed for continuous optimization problem, it can be expanded to handle discrete variables easily [9]. Furthermore, PSO has only a few parameters, which makes it easy-adjusted to get better performance. Therefore, PSO is expected to be suitable for the FS problem of face detection formulated as an INLP.

Based on a NN-based face filter, this paper presents a PSO for the FS problem formulated as an INLP. The feasibility of the proposed method is demonstrated and compared with the exhaustive search method on a set of 42 test images with promising results. In this paper, we assume that there is only one face contained in the test image. The extension of the method to detect multiple faces will be done in our future work.

2. NEURAL NETWORK BASED FACE FILTER

The purpose of the face filter is to classify a window of size 20×20 pixels extracted from an image, as a face or as a non-face.

We use a retinally connected neural network [3] to serve as the face filter. The network takes a 20×20 pixel window as input. Each hidden unit receives inputs only from part of the input layer (called a receptive field). There are 3 kinds of receptive fields: four 10×10 pixel regions, sixteen 5×5 pixel regions, and six 20×5 pixel overlapping horizontal stripes. Each of these receptive fields has full connection to two hidden neurons. It has a single output. The output is a real value from -1.0 to 1.0, giving the likelihood as to what extent the input window looks like a face.

The neural filter was trained using standard back-propagation. The face training set is composed of 1000 frontal faces (positive examples). Each face image was normalized into 20×20 pixels. Fifteen additional face examples were generated from each original face image by randomly rotating it (up to 10°), scaling (90% to 110%), translating (up to half a pixel), and mirroring. 9000 random patches chosen from images containing no faces serve as the initial non-face training set (negative examples). Additional non-faces were introduced by applying the bootstrap algorithm [9]. Both the face and non-face examples were enhanced by the preprocessing procedures as described in Subsection 5.2.

3. FORMULATION OF FS AS AN INLP

Figure 1 shows a 3D plot of the neural network output with the image on the left as input. It can be seen that the face filter is very selective: it responds strongly within a several-pixel...
radius of the face while its output on the background is low. Moreover, around the face, the output of the neural filter is a monotonous and growing function. The properties lead to the following heuristic:

The face search (FS) problem can be formulated as an integer nonlinear optimization problem (INLP). Let \(T \) represent an input image, \(SW \) represent a subwindow and \(dv \) be its detection value (the corresponding output of the neural network). With these notations the FS problem can be stated as:

\[
\arg \max_{SW} dv(SW) \quad \forall SW \in T
\]

If \(dv \geq \text{threshold} \) the corresponding portion of \(SW \) is declared as a face, where \(dv \) is the best detection value found so far and \(\text{threshold} \) the given threshold value of neural network output.

4. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a novel evolutionary computation method, modeled after the social behavior of flocks of birds [8]. PSO is a population based search process where individuals, referred to as particles, are grouped into a swarm. Each particle in the swarm represents a candidate solution to the optimization problem at hand. The performance of particles is measured using a predefined fitness function which encapsulates the characteristics of the optimization problem.

Each particle \(i \) maintains the following information: \(X_i \), the current position of the particle; \(V_i \), the current velocity of the particle; \(pbest_i \), the personal best position discovered by the particle so far, and also the best position found by the entire swarm so far, denoted by \(gbest \). All particles start with randomly initialized velocities and positions. At iteration step \(t \), the current velocity and position (searching point in the solution space) are updated by:

\[
V_i(t + 1) = \omega V_i(t) + c_1 r_1(t)(pbest_i - X_i(t)) + c_2 r_2(t)(gbest - X_i(t))
\]

\[
X_i(t + 1) = X_i(t) + V_i(t + 1)
\]

where \(\omega \) is the inertia weight, \(c_1 \) and \(c_2 \) are the acceleration constants, \(r_1(t) \) and \(r_2(t) \sim U(0, 1) \). The velocity of a particle will be set to a predetermined maximum velocity \((V_{\text{max}}) \) if it exceeds \(V_{\text{max}} \).

The features of the algorithm can be summarized as follows [8, 9]:

(a) PSO searches the solution space using a group of searching points like genetic algorithm (GA); thus it has inherent parallelism.

(b) The first term of the right side of Equ. (3) is corresponding to the exploration of the search space. The second and third terms of that are corresponding to the exploitation of the best solutions found so far. Namely, the method has a flexible and well-balanced mechanism to utilize exploration and exploitation in the search procedure.

(c) The original PSO was originally developed for nonlinear optimization problems with continuous variables. However, the method can be expanded to discrete problems easily.

(d) Because the update process of PSO is based on simple equations, the algorithm is easy to implement and computing economically.

(e) Only a few parameters need to be adjusted in PSO which makes it easy-adjusted to get better performance.

Due to the above features, PSO is expected to be suitable for the FS problem formulated as an INLP.

5. FACE SEARCH USING PSO

The main steps of the proposed method are shown in Figure 2. In the following, we will describe the approach in detail.
For a subwindow \(SW = (C_x, C_y, 20q^2) \), we find its mapped \(20 \times 20 \) window \(SW' = (C_x, C_y, 20) \) in level \(k \) of the pyramid by:

\[
C_x = \left\lfloor \frac{C_x}{q} \right\rfloor, C_y = \left\lfloor \frac{C_y}{q} \right\rfloor
\]

(8)

So each particle \(X \) is constructed as \(X = (C_x, C_y, k)^\top \). \(C_x, C_y, \) and \(k \) are defined in [10, W-10], [10, H-10] and [0, L] respectively.

5.2 Preprocessing

Before a \(20 \times 20 \) window is passed to the trained neural network, it is preprocessed with lighting correction (by subtracting a best fit linear function) and histogram equalization as in Ref. [2, 3]. The former reduces the effect of different lighting conditions and the latter improves contrast across the window.

5.3 Fitness evaluation

To evaluate each particle (subwindow), we directly use its detection value (the corresponding output of the neural filter); the larger its detection value \(dv \), the more the subwindow resembles a face. The fitness function \(f(SW) \) is given as

\[
f(SW) = dv(SW) \quad SW \in T
\]

(9)

where \(T \) is the input image and \(SW \) is a subwindow, \(dv(SW) \in [-1, 1] \).

The corresponding subwindow of a particle may go beyond the image’s boundary even if all its variables lie in the search boundary. To guarantee feasibility of solutions, we investigated a random repair method (RRM): if a particle is checked to be infeasible, it will be forced to “fly” to a new, randomly generated position. The method works as follows:

If \(SW \notin T \), then

Step 1: Randomly generate a new position \(SW' \).

Step 2: If \(SW' \in T \), replace \(SW \) with \(SW' \); otherwise, go to step 1.

In EAs, the classical approach to deal with infeasible solutions is to add a penalty term to the fitness function [10]. The proposed RRM has proven more efficient for our problem than the penalty approach.

5.4 Particle flying

Based on their fitness, particles in the swarm are guided by Equ. (3) and (4) to fly to possible face regions in the image. When corresponding to a subwindow in the input image, they are transformed into integers by using the floor function. During flying, if a variable extends the defined search boundary, it will be set to the closest limit, i.e.,

\[
x_j = \begin{cases} x_{\text{min}} & \text{if } x_j < x_{\text{min}} \\ x_{\text{max}} & \text{if } x_j > x_{\text{max}} \end{cases}
\]

(10)

where \(x_{\text{min}} \) and \(x_{\text{max}} \) are respectively the lower and upper search limit of variable \(x_j, x_j \in X \).

5.5 Stop criterion

† Each term in Equ. (5) and (7) is transformed from a real value to an integer value by using the floor function.

The algorithm is stopped when 1) a “face” is found – the detection value of the best particle is above the given threshold or 2) the maximum iteration number is reached.

6. EXPERIMENTS

A number of experiments were performed to evaluate the proposed method. The experiments were performed on 42 images with complex backgrounds. Some of the images were chosen from CMU Test Set [11] and other Internet resources; the others were taken by us in an indoor environment using a CCD camera. Each image contains only one face and all the faces can be detected by the neural filter. All the images have the same size of 320×240 and the face size ranges from 34×34 to 178×178. The threshold of the neural network output was set to 0.1.

According to pre-simulation, the parameters of PSO were set as:

\(c_1, c_2: 0.2 \)

\(w: 1.2 \)

\(V_{\text{max}}: 0.2 \times X_{\text{max}} - X_{\text{min}} \).

Swarm size \(P: 60 \).

Maximum iteration number \(MaxIt \) is set to 70, but with one restart allowed, i.e., if the algorithm fails to find a face within \(MaxIt \) it will be re-initialized and perform a new search.

6.1 Experiments

For each image in the test set, we ran our algorithm 100 times. The total detection results are listed in Table 1. Some examples are shown in Figure 3. The time consuming was reported on an AMD Athlon 750 MHz PC with Windows 2000 as its OS.

<table>
<thead>
<tr>
<th>Success</th>
<th>False</th>
<th>Non-convergence</th>
<th>ANSEs</th>
<th>APT (ms)</th>
</tr>
</thead>
</table>

| 93.6% | 2.52% | 3.88% | 1965 | 180 |

False: false detection rate.

ANSEs: Average Number of Subwindow Evaluations,

\[
\text{ANSEs} = \frac{\sum_j \sum_i \text{NSE}_i}{J \times I}, \text{ where } \text{NSE}_i \text{ is the number of subwindow evaluations in a run, } J \text{ the number of test images and } I \text{ the number of test runs for each image.}
\]

APT: Average Processing Time per image,

\[
\text{APT} = \frac{\sum_j \sum_i \text{PT}_i}{J \times I}, \text{ where } \text{PT} \text{ is the time consuming in a run.}
\]

As shown in Table 1, the proposed search method yielded a high success rate (93.6%) on average (the best is 100% and the worst is 72%). Moreover, about 39% of the failures are because PSO fell into a false detection, and the other failures are due to non-convergence. A further reduction of false detections can be achieved by arbitrating among multiple networks [3]. From the examples shown in Figure 3, we can see that the proposed method maintains robustness in images which contain faces under a very wide range of conditions including scale, pose, position, backgrounds, illumination conditions, etc.

Table 2 gives the comparison of the proposed search method (we call it a swarm search method) with the exhaustive search method. It’s clear that the time consuming and the number of subwindow evaluations of the proposed
method are much less than those of the exhaustive search. Although with a little loss of detection rate (due to non-convergence), a great speedup has been achieved by using the swarm search compared to using the exhaustive search.

Table 2 Swarm search vs. exhaustive search

<table>
<thead>
<tr>
<th>ANSEs</th>
<th>Swarm search</th>
<th>Exhaustive search</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1965</td>
<td>193737</td>
<td>1:99</td>
</tr>
<tr>
<td>APT (ms)</td>
<td>180</td>
<td>16894</td>
<td>1:94</td>
</tr>
</tbody>
</table>

6.2 Comparison with other speedup methods

Table 3 shows the comparison of the proposed method with other NN-based face detection methods in processing time. As introduced in Section 1, these methods also take some measures to reduce the detection time. Although the comparison is not accurate for the different systems were tested on different computers and using different sizes of images, we think our system is faster.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>320x240</td>
<td>1965</td>
<td>320x240</td>
<td>320x240</td>
<td>192x144</td>
<td>108x108</td>
</tr>
<tr>
<td>175 MHz</td>
<td>1000</td>
<td>SGI O2 workstation</td>
<td>Penium 990 MHz</td>
<td>Sun UltraSpac 30 workstation</td>
<td>DEC Alpha 333</td>
</tr>
<tr>
<td>0.18</td>
<td>2</td>
<td>15</td>
<td>0.7</td>
<td>2</td>
<td>2.9 (average)</td>
</tr>
</tbody>
</table>

7. CONCLUSION

This paper presents a new search method for NN-based face detection. The proposed method formulates the problem of face search into an integer nonlinear optimization problem (INLP) and expands the basic PSO to solve it. The feasibility of the proposed method is demonstrated on a set of 42 images with promising results. With fine-adjusted parameters, PSO only requires less than 2000 evaluations of subwindows for finding the face in an image. The results are much more effective and superior over the classical exhaustive search method. Many object detection problems can be formulated as an INLP and the results indicate the possibility of PSO as a practical tool for various INLPs of object detection.

However, we have found that the method doesn’t works well on some images, especially when the face size is very small. And for simplification, only single-face detection is considered in this paper. How to improve the robustness and extend the method to multiple face detection is the future work.

REFERENCES