송전용 폴리머에의 산불 영향에 따른 전기적기계적 특성 분석

한국전력공사, 한국전력연구원

An Analysis of Electrical and Mechanical Properties of Forest Fire of Polymer Insulator for T/L


Abstract - 우리나라 송전선로는 대부분 산지에 위치하고 있기 때문에 산불과 같은 화재가 발생할 확률이 높다. 이에 대한 신뢰성에 중요한 문제를 발생시킬 수 있다. 따라서 산불의 가능성이 온도일 600℃ 부근의 노출된 폴리머에의 재질에 대한 전기적, 기계적 특성 실험을 하기 위함. 그 결과, 전기적, 기계적 시험은 기준치 이상으로 발전하였으며, 하우징 표면은 무기물에 노출되어 다공성의 특성을 보였고, 메이크시험 결과는 부하 강도의 약사량 시간은 A시로는 260초, 290초였고, B시로는 335초, 365초였다. 또한, 일본식 결과 220℃ 근처에서 ATH의 분해가 일어나 경계구가 발생되어 설계에 폐해를 나타냈다.

1. 서론

우리나라의 송전선로 위치는 국토의 65%에 이르는 산지에 대부분 포화되어 있어, 산불과 같은 화재나가 발생할 경우 전선이나 금속류 등의 도로와 같이 오존으로 인한 사고가 발생하여 송전선로의 운용이 장려된 결과로 산업전반에 걸쳐 급격한 파급효과를 미치게 되는 것이다. 특히 송전용 폴리머에는 송전선을 지지하고 절연 역할을 하는 가장 중요한 기재로서 하나로 제품 경량, 온반 및 설치가 용이하고, 수반한 특수 성능으로 양행성장을 감소시키고 빠르게 아너 누설정류의 감소로 손실 없는 전력공급 측면에서도 크게 의미한다. 이밖에도 높은 기계적 강도, 마찰 성성능과 급기 회로 актив화 등의 특성은 거의 가지고 있어 송전기장공사예시에의 사용과 점점 증가하는 추세이며, 송전용 폴리머에는 예록 시사지인 glass fiber를 첨부하여 제조된 FRP-Rod와 누설강화를 확보하기 위한 외부재인 하우징(housing)은 합성뿐만 아니라 EPDM을 제조로 사용되어 산불과 같은 고순온에 노출시 송전선로의 영향을 발생시킬 우려가 있다. 이와 같은 폴리머재의 사용량 증가 및 폴리머재의 전선에 걸쳐 접촉된 연구가 많이 진행되었음에도 불구하고, 산불유발에 대한 폴리머재의 신뢰성에 대한 연구는 지금까지 국내외에 걸쳐 거의 정확한 실험은 없다. 따라서 본 연구에서는 154kV 송전용 폴리머 선형자리를 이용하여 서식선로에 상한 92kV를 인가하여 600℃ 부근의 모의 산불 온도에서 폴리머에의 노출 시간 시험 후, 송전용 폴리머에의 변색 성질, 성능 분석, 전기적, 기계적 특성 실험 및 하우징에 특성 분석을 통해 송전용 폴리머에의 산불영향 신뢰성을 검증하였다.

2. 본론

2.1 실험 방법

본 연구의 송전용 폴리머에 시료는 A사의 SR 25 내열형과 B사의 SR 25 일반형을 이용하여 고장 전력시

2.2 시험 결과

2.2.1 전기적 특성

2.2.2 기계적 특성

<table>
<thead>
<tr>
<th>시험</th>
<th>시험부위</th>
</tr>
</thead>
<tbody>
<tr>
<td>A시료</td>
<td>첫 번째 갯</td>
</tr>
<tr>
<td>B시료</td>
<td>첫 번째 갯</td>
</tr>
</tbody>
</table>

表 1. 시료 채취

그림 1. 시료 채취

그림 2. 시료채취 부위
산불 모의된 송전용 폴리머 현수예처리에 대한 연구를 분석하기 위해 테스트된 전기적 시험 항목은 냉중절연선 전압시험, 상용주파수장외장시험 등의 실험을 시행하였다. 송전용 폴리머 현수예처리에 대한 전기적 시험 결과는 표 2에 나타내었다. 

<table>
<thead>
<tr>
<th>시료명</th>
<th>Type</th>
<th>애자상태</th>
<th>상용주파수장외장시험 [kV]</th>
<th>냉중절연선 전압시험 (강극성) [kV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A시리</td>
<td>SR25F</td>
<td>산불 모의</td>
<td>531.0</td>
<td>925</td>
</tr>
<tr>
<td>A시리</td>
<td>SR25F</td>
<td>산불 모의</td>
<td>529.8</td>
<td>895</td>
</tr>
<tr>
<td>B시리</td>
<td>SR25N</td>
<td>산불 모의</td>
<td>511.6</td>
<td>900</td>
</tr>
<tr>
<td>B시리</td>
<td>SR25N</td>
<td>산불 모의</td>
<td>512.4</td>
<td>880</td>
</tr>
</tbody>
</table>

2.2.1. 기계적 특성

<table>
<thead>
<tr>
<th>시료명</th>
<th>Type</th>
<th>애자상태</th>
<th>인장파하강량 [kgf]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A시리</td>
<td>SR 25F</td>
<td>산불 모의</td>
<td>15,150</td>
</tr>
<tr>
<td>A시리</td>
<td>SR 25F</td>
<td>산불 모의</td>
<td>13,950</td>
</tr>
<tr>
<td>B시리</td>
<td>SR 25N</td>
<td>산불 모의</td>
<td>15,800</td>
</tr>
<tr>
<td>B시리</td>
<td>SR 25N</td>
<td>산불 모의</td>
<td>15,650</td>
</tr>
</tbody>
</table>

2.2.3. 하우징 특성
가. SEM 분석
SEM 분석의 경우는 산불의 모양을 촬영하였으며 직접적인 화염을 받은 곳 하부의 경우는 육안으로 가장 많은 손상을 보인 부분을 촬영하여 분석하였다. A시리의 경우는 20[kV], 배율 5K 전 반영산불을 촬영하여 하우징의 경우는 그림 2와 같이, 산불의 경우는 하우징의 특성을 보였으나, A-1, A-2 모두 다중성의 표면 특성은 보이며 두기와 글루탱이 노출될 것으로 보인다. 이는 하우징에 의해 유기 성분이 날아가 두기와 글루탱이 노출될 것으로 촬영되어, 특히 가장 많은 손상을 보인 곳 하부의 표면부분은 표면이 심하게 닫지만 상태를 보였다.

B시리의 경우도 그림 3과 같이, 산불의 경우는 매끄러운 표면을 보였지만 A-1, A-2 모두 다중성의 표면 특성을 보이며 두기와 글루탱이 노출될 것으로 보인다. 또한 가장 많은 손상을 보인 곳 하부의 표면부분은 표면이 심하게 닫지만 상태를 보였다.

(c) A-2
(d) A-1의 각 하부 중 가장 열화가 심한 부위

그림 2. A시리 송전용 폴리머 예처리의 SEM 분석 결과

(a) N-B
(b) B-1

(c) B-2
(d) B-1의 각 하부 중 가장 열화가 심한 부위

그림 3. B시리 송전용 폴리머 예처리의 SEM 분석 결과

또한, A시리의 송전용 폴리머 예처리의 가장 손상성이 큰 애화부의 단면을 절라내 단면층에 대한 표면을 분석한 결과 그림 4와 같이 나타났다. 그림 4(a) 부분은 절라내어 SEM을 분석한 결과 그림 4(b)와 같이 건전층과 손상층의 두드러진 표면 상태를 확인할 수 있었다. 손상층은 약 0.7-[mm] 정도의 두께를 보였다.

표 4. 하우징 실험

<table>
<thead>
<tr>
<th>시료 종류</th>
<th>애자상태</th>
<th>하우징 실험시간 (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A시리</td>
<td>A-N</td>
<td>420</td>
</tr>
<tr>
<td>A시리</td>
<td>A-1</td>
<td>420</td>
</tr>
<tr>
<td>A시리</td>
<td>A-2</td>
<td>420</td>
</tr>
<tr>
<td>B시리</td>
<td>B-N</td>
<td>420</td>
</tr>
<tr>
<td>B시리</td>
<td>B-1</td>
<td>420</td>
</tr>
<tr>
<td>B시리</td>
<td>B-2</td>
<td>420</td>
</tr>
</tbody>
</table>
나. 내야크 특성

표 4는 내야크 특성을 시험한 결과를 나타낸 것이다. 각 애자의 것 상, 하부로 나누어 내야크시험을 한 결과 A시료, B시료 수온응용 풍력에 애자의 산물 및 산물의 수온응용 풍력에 애자 세 번째 것은 상, 하부 모두 420초 (7단계) 동안 야크가 갔었다. 하지만, 산물 모의 애자 첫 번째 끝의 하부의 경우 A시료 수온응용 풍력에 애자는 260초, 280초에 야크가 소멸되었고, B시료는 335초, 336초에 야크가 소멸되었으며 이는 하부의 산물 손상에 기인한 것으로 사료된다.

d. 열분석

산물 모의(화염) 수온응용 풍력에 애자에 대한 제질의 열화를 조사하기 위하여 TGA와 DSC를 이용하였으며 시험의 특성상 일부분만을 대상으로 하기 때문에 화염으로 인한 열화가 심한 부분과 덜한 부분을 선택하여 시험을 하였다.

그림 4, 5는 A시료, B시료 수온응용 풍력에 애자의 산물 모의시험에 관한 하우징 제질의 DSC-TGA thermogram을 나타낸 것이다. 그림에서 보는 것처럼 산물의 경우 ATH가 함유된 산물로 고무의 열성적인 thermogram을 보여주고 있다. 220℃ 근처에서 ATH의 분해가 일어나 결정수가 발생됨을 알 수 있다. 화염에 의한 열화를 받은 시료의 경우에도 다르게 하기 때문에 ATH의 분해와 열성적인 거두의 열화가 나타났음을 알 수 있으며 이는 경기적인 관점에서 하우징 고무의 기계적 성능의 저하로 인하여 문제 발생의 소지가 있음을 시사한다.

(3) SEM 분석결과 두기들의 노출에 의한 애자에서 다중성의 표면을 관찰할 수 있었고, 각 하부의 표면은 상하게 갈라진 상태가 나타났다.

(4) 내야크 시험 결과는 A시료 및 B시료는 상, 하부 모두 420(7단계) 동안 야크를 겪었다. 그러나, A시료의 첫 번째(A-1) 갔은 260초, 280초에 야크가 소멸되었고, B시료의 첫 번째(B-1) 갔은 335초, 336초에 야크가 소멸되었다.

(5) 열분석 결과 220℃ 근처에서 ATH의 분해가 일어나 결정수가 발생되어 산물로 고무의 열화가 나타났다.

상기 결과로부터 풍력에 애자의 하우징 제질은 소지의 면역적인 관계를 가지고 있어 소지의 특성이 저하되어 있을 가능성이 나타난다고 판단한다. 산물으로 내야크시험, 시료에 의해 노출된 제품의 경우 초기에는 사용할 수 있으나, 연화 교체하는 등의 적극적인 대책과 보완이 필요하다고 판단한다.

[참 고 문 헌]