The Study of Overhang Effect of a Novel Axial Flux Permanent Magnet Motor with a Double sided Airgap
WonYoung JO, InJae LEE, ByungKuk KIM, Taehyun KIM, DongWon HWANG, YunHyun CHO, YongDo CHUN
Donga University, Korea Electrotechnology Research Institute

Abstract - The permanent magnet(PM) overhang effect has been generally used to enhance the linkage flux in the motor. In this paper, we quantitatively investigate the PM overhang effect in the new type axial flux permanent magnet (AFPM) motor with a double-sided airgap. The motor performances such as linkage flux, back electromotive force (EMF), magnetic force, etc. were analyzed according to the variation of the overhang angle. From the results, we can select the proper overhang angle of PM which improves the performance of the AFPM motor.

2. 해석모델 및 해석방법

2.1 평판형 전동기의 구조 및 사양

<table>
<thead>
<tr>
<th></th>
<th>Power</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated</td>
<td>15[kW]</td>
<td>380[V]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Speed</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated</td>
<td>4*5.87[A]</td>
<td>1800[rpm]</td>
<td>79.6[Nm]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Slot number</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated</td>
<td>18</td>
<td>S45C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pole number</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated</td>
<td>16</td>
<td>S45C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turns/coil</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated</td>
<td>90[turns]</td>
<td>φ1.2[mm]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Material</th>
<th>Coercivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated</td>
<td>NdFeB</td>
<td>970[kA/m]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Air-gap</th>
<th>Winding connection</th>
<th>Overhang angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated</td>
<td>2[mm]</td>
<td>4-Y</td>
<td>0'9[deg]</td>
</tr>
</tbody>
</table>

기존의 평판형 전동기는 일반적으로 코어리스전동기로서 고정자 슬롯이 없는 구조로 고 크기가 소형이며, 코팅 토크를 최소로 요구하는 가전제품용이나 사
부기기용으로 주로 개발되었다. 자 lief 있는 경우에도 공평한 구조감소를 철단한 고경자 코어의 형태로 제작상 어려움이 많다.

반면에 본 논문에서 제안한 평평한 전동기는 코어의 구성이 기존의 평평형 전동기와 달리 끝 코어와 평판
적층 코어 및 고정 프레이임으로 나누어지며, 코어 조립은
평판 적층 코어에 치 코어를 삽입하고, 고정자 프레임에
의해 장착되는 구조로 되어 있다. 고정자 코어는 드롭행
구조의 습도 코어로 적층되어 있으며, 회전자는 고정자
면에서 마주보는 영구 자석과 고정 프레이임으로 구성되어
있는 영구면식 내전 평평형 전동기가 될 수 있다. 이 평
평형 전동기의 구조는 그림 1과 같고, 주요 사항은 표 1
에 나타난다.

2.2. 평평형 전동기의 특성식

평판형 전동기의 고정자에 흐르는 전류와 미소 영구
자석에 의해 회전자에 작용하는 힘은 풀레임의 원순 법
칙으로부터 다음과 같이 계산할 수 있다.

\[ T_d = K_n I_b N_{mg} (D_{out} - D_{in}) = K_n \times \text{Cross Section Area} \]  
\[ (1) \]

위의 식으로부터 적층 간이에 비례하는 평평형 전동기
의 토크값과는 달리 평평형 전동기에서는 내경과 외경의
간이에 따라 토크가 결정됨을 알 수 있다.

영구 자석 한 극단 높이에 의해 발생하는 공극 내 자
속과 상당 고정자 전기자 전선에 의해 발생한 상당 역기전력은
다음과 같이 구할 수 있다.

\[ \Phi = a_{p} B_{ms} \int_{D_{in}}^{D_{out}} r dr = 0.125a_{p} B_{mg} D_{out} (1 - r_{2}) \]  
\[ (2) \]

\[ e = k_{s} N_{1} \Phi \frac{d\Phi}{dt} = 2\pi f k_{s} N_{1} \Phi \cos (\omega t) \]  
\[ (3) \]

\[ P_R = \frac{m}{T} \int_{0}^{T} e(t) i(t) dt = \eta K_n E_{pg} I_{PK} \]  
\[ (4) \]

여기서,

\[ N_{1} \] : 상당 전기수, \n\[ I \] : 입력 전류, \n\[ B_{mg} \] : 공극 내 자속 빌도, \n\[ D_{out} \] : 내경, 외경, \n\[ a_{p} \] : 공극 내 정점과 자속에 대한 계수, \n\[ K_{s} \] : 토크 계수, \n\[ p \] : 극수, \n\[ k_{s} \] : \[ D_{in}/D_{out} \] .

2.3. 해석 모델

본 연구에서는 그림 2에서 보인 바와 같이 숭도 쪽에
대한 영구 자석의 오버페어 각도에 따라 오버페어 효과가 전
동기 특성에 미치는 영향에 대해 연구하였다. 여기서는
오버페어 각도 \( \theta_{vf} \) 값을 0°, 15°, 30°, 45°로 변형시키
며, 그에 따른 특성을 살펴보았다.

그림 2. 습도형 영구 자석 형상에 따른 오버페어 구조

2.3. 2차원 및 3차원 유한 요소법

기존의 원형 전동기의 경우 계산 시간 단축 및 간단
한 모델링 장차의 이점으로 2차원 해석이 주로 사용되고
있다. 그러나 2차원 해석의 경우 단면의 수직 방향으로
기하학적, 물리적 양이 일정하다는 조건이 필요하다. 본
논문에서는 해석 대상 전동기는 축방향으로 구조가 나뉘
되어 있어 2차원 해석의 적용이 어려울 수 있다. 따라서
평평형 전동기에 관한 해석이 문제는 근본적으로 3
차원 해석으로 해석할 수밖에 없다[4].

그림 3은 대상 전동기의 1/2 해석 모델 요소 분할도를
나타내며 전체 요소수 및 정점수는 각각 53612, 10108
이다. 공극의 요소는 해석의 정밀성을 위하여 4중으로
분할하였으며, 드롭과 자기적 특성은 백스테로 응력을
적용하여 계산하였다. 평평형 전동기는 3차원 FEM 인버
t로 구동되므로, 동작특성을 정확히 파악하기 위해서는
FEM 인버터의 스위치, 구동회로의 전압방향성 및 환상다이오드 등을 고려하여야 하다. 본
논문에서는 3차원 해석의 적용 시, 해석 모델을 각 상의
입력 전류가 5.57 A이고, 3상 전파방식으로 구동되는 정
지게 문제로 보았다[4].

그림 3. 해석 모델의 요소 분할도(1/2모델)

3. 해석 및 실험 결과

3.1. 오버페어 구조에 따른 특성

영구자석에 의한 오버페어 효과를 정량적으로 알아보기
위해 전용을 능가하지 않은 상태의 오버페어 각도에 따른
자속밀도 분포를 살펴보면 그림 4와 같다. 그림 4(a)와
간이 오버페어의 없는 구조에서는 내경, 외경 부분에서 자
속의 성장 이동이 발생하나, 오버페어 각도를 참가
들었을 경우 영구자석 오버페어 부분에서 발생한 자속 억
부가 고정자 코어로 제어 함으로써 공극 양단부에서 자
속이 점차 증가함을 알 수 있다. 따라서 오버페어 구조는
\( \theta_{vf} \) 방향 공극 양단에서의 자속 증가성함이 많은 경우
제
제, 자속을 증가시키기 위해 오버페어 효과를 이용하면 효
과적이라는 할 수 있다. 그림 5는 오버페어 각도에 따른 공

- 1175 -
국 저속 밀도 분포를 나타낸 것이다. 여기서 \( \theta_{\infty} \) 가 0°, 1.5°, 3°, 6°일 때는 정차 회전 자속이 많이 작고 공극 양단에서의 저속 밀도가 높으나, 9°일 때는 오히려 저속 밀도가 낮아지는 것을 볼 수 있다. 이것은 영구 자속의 표면 저속 밀도가 중앙 부분보다 양단 부분에서 더 크기 때문에다. 따라서 회전 자속량과 무실 저속량으로 볼 때, 9°의 오버渎을 가지는 영구 자속이 가장 적합할 것으로 판단된다.

그림 6은 정각 상태 운전 시 회전자의 속도가 무분별 1800rpm일 때 오버渎 각도에 따른 각각의 역기전력 특성을 나타낸 것이다. 오버渎 각도에 따라 고정자 자속량이 증가함으로써 역기전력 크기가 비례하여 증가함을 알 수 있다. 그림 7은 오버渎 각도에 따른 코팅 토크 특성을 나타낸 것으로 오버渎 효과는 코팅 토크 특성에 큰 영향을 미치지 않을 것임을 알 수 있다. 이로 부터 토크 특성 또한 큰 변화가 없을 것임을 예측할 수 있다.

4. 결론

본 논문에서는 오버渎 구조물 갖는 양측연 방향 영구자속 회전형 전동기들 대상으로 영구 자속의 오버渎 효과가 전동기 특성에 미치는 영향에 대한 연구에 대하여 다루었다. 오버渎의 효과적 해석을 위해 3차원 유한 요소법을 사용하였고, 오버渎 각도 변화에 따라 자속량, 역기전력, 자기력 등에 미치는 영향에 대해 검토하였으며, 결과적으로 오버渎 효과는 회전 자속을 증가시킬수록, 역기전력은 이에 비례함을 확인하였다. 또한 이로 부터 오버渎 각도가 6°로 했을 경우에는 특성이 가장 좋은 것으로 나타났음을 알 수 있었다.

평판형 전동기는 3상 PWM 인버터로 구동되므로, 보다 정확한 특성 해석을 위해서는 스위칭, 구동 회로 등이 고려되어야 하고, 이는 전동기 특성 실험과 비교해야 하는 등 이는 앞으로 자속량 연구를 통해 보완해 나가야 할 것이다.

감사의 글
본 연구는 에너지관리공단의 에너지자원기술개발사업의 지원으로 수행된 논문임을 밝힙니다.

[참고 문헌]