Analysis of Characteristics of Residential Distribution Line for PLC Modem Design

Duropyo Hong, Jinmok Lee, Jaeho Choi
School of Electrical and Computer Engineering, Chungbuk National University

Abstract - This paper describes the measurement and analysis of the basic line constants in PLC (Power Line Communication) in the residential building. An apartment is considered as one of the conventional residences to get the line constants in this paper and Agilent 4333B LCR Meter is used to measure the detailed values each area, and the specific results and the averaged analysis data are shown in the tables. The measured results are different from the calculated values with using conventional formula due to the line arrangement, neglected factors, complex permeability, and etc. Also, this paper describes many kinds of lines and wiring figures of domestic construction. Finally, it is utilized with the analyzed line characteristics in frequency domain as a planning reference of PLC.

그림 1 주택 배선의 배치 형태

선로를 정확한 2선 전송 선로로 가정하고 순식간에 고려하지 않았을 때 선로정수(\(R, L, C\))는 일반적으로 적용해 오던 식 (1), (2), (3)과 같이 나타날 수 있다 [2].

\[
R = \frac{1}{\pi a} \sqrt{\frac{\mu}{\sigma}} [Q/m] \tag{1}
\]

\[
L = \frac{L_0}{\pi} \cosh^{-1}\left(D/2a\right) [H/m] \tag{2}
\]

\[
C = \frac{1}{\pi a} \varepsilon_{\text{r,eff}} C_0 \cosh^{-1}\left(D/2a\right) [F/m] \tag{3}
\]

위의 식에서 \(f\)는 주파수, \(\mu\)는 투자율, \(\sigma\)는 도전율, \(a\)는 도체의 반지름, \(D\)는 도체 중심축간 거리, \(\varepsilon_{\text{r,eff}}\)는 전장파에 의한 유전율, \(C_0\)는 유형 유전상수를 나타낸다. 지향은 주파수의 제공근에 비례하지만 인덕턴스와 케이퍼턴스는 주파수와 관계없이 투자율과 유전율 및 도체 배열 형태에 따라 다르게 값을 갖는다.

표 1. IV전선의 국내 규격

<table>
<thead>
<tr>
<th>지름 (mm)</th>
<th>두께 (mm)</th>
<th>바람직 (mm)</th>
<th>도체정수 (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>2.4</td>
<td>35.7</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8</td>
<td>2.6</td>
<td>22.8</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8</td>
<td>2.8</td>
<td>15.8</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8</td>
<td>3.2</td>
<td>8.92</td>
</tr>
<tr>
<td>2.0</td>
<td>0.8</td>
<td>3.6</td>
<td>5.65</td>
</tr>
<tr>
<td>2.6</td>
<td>1.0</td>
<td>4.6</td>
<td>3.35</td>
</tr>
<tr>
<td>3.2</td>
<td>1.2</td>
<td>5.6</td>
<td>2.21</td>
</tr>
<tr>
<td>4.0</td>
<td>1.4</td>
<td>6.8</td>
<td>1.41</td>
</tr>
<tr>
<td>5.0</td>
<td>1.6</td>
<td>8.2</td>
<td>0.904</td>
</tr>
</tbody>
</table>

국내 주택 배선에서 사용되는 전선은 IV전선을 가
2.2 주택 배선의 선로정수 측정

선로정수를 측정하는 간단한 모델을 그림 2에서 보여 주고 있다. 측정 대상인 DUT(DEVICE UNDER TEST)에 실험 신호인 V의 전압을 인가하여 내부 저항 Rs를 통과 한 후의 전압 V와 DUT에 호르는 전류 I를 측정하여 임피던스를 계산한다.

\[Z = R_s + jX = |Z| \angle \theta \]
\[X = \omega L_s \quad \text{or} \quad -j \frac{1}{\omega C_s} \]
\[Z = R_s + j\omega L_s \quad \text{or} \quad R_s - j\frac{1}{\omega C_s} \]
(단, \(\omega = 2 \pi f \) f test frequency)

그림 2 임피던스 측정 모델

2.3 계산 및 측정 결과

표 2에서 IV선도에 길이와 주파수에 따라 식 (1), (2), (3)에서와 같은 방법으로 계산하여 얻었다. 예로 사례의 길이(D)를 도체 반지름(a)의 4배로 하여 계산하여 얻은 값이다. IV선도의 선로정수 계산값은 평행한 2선 전도선으로 가정하고 손실크를 고려하지 않았음을 때의 값에서 보여주는 값과 같이 R값 주파수에 따라 수록 표피효과와 근접효과 등으로 커지는 반면 L과 C값은 주파수에 관계없이 일정한 값으로 나타날 수 있다.

<table>
<thead>
<tr>
<th>주파수</th>
<th>선로정수</th>
</tr>
</thead>
<tbody>
<tr>
<td>100kHz</td>
<td>15.57 2.1123</td>
</tr>
<tr>
<td>20kHz</td>
<td>8.37 2.1123</td>
</tr>
<tr>
<td>1kHz</td>
<td>0.83 2.1123</td>
</tr>
</tbody>
</table>

주택배선의 선로정수 측정은 그림 5와 같은 방법으로 그림 4의 본선단의 분기 차단기를 기준으로 모든 부하를 분리한 후 A, B, C, D, E, F, G의 저항에서 단락시킨 뒤 저항 값과 인덕턴스 값을 측정하였으며 개방상태에서 커럽시턴스 값의 선로정수를 각각 측정하였다.

그림 5 주택배선의 선로정수 측정 구성

측정 결과 표 3과 표 5에서 보는 것과 같이 R값은 주파수가 증가함수로 증가하였으나 L과 C값은 값 표 4, 6, 7에서 보는 바와 같이 주파수가 증가함에 따라 감소하였 다. 주택배선의 단위 길이당 선로정수 평균값을 표 8에 나타내었다.

<table>
<thead>
<tr>
<th>주파수</th>
<th>측정값</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2-A</td>
<td>560</td>
</tr>
<tr>
<td>C2-B</td>
<td>700</td>
</tr>
<tr>
<td>C2-C</td>
<td>800</td>
</tr>
</tbody>
</table>

그림 6 주택 내부 배선도
표 4. 회로 C2의 L(μH) 측정값

<table>
<thead>
<tr>
<th>주파수</th>
<th>C2-A</th>
<th>C2-B</th>
<th>C2-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100kHz</td>
<td>10.8</td>
<td>10.6</td>
<td>5.2</td>
</tr>
<tr>
<td>20kHz</td>
<td>11.2</td>
<td>11</td>
<td>5.4</td>
</tr>
<tr>
<td>10kHz</td>
<td>11.5</td>
<td>11.3</td>
<td>5.5</td>
</tr>
<tr>
<td>1kHz</td>
<td>11.8</td>
<td>11.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

함에 따라, 대전된 입자의 편성력으로 인해 입자의 변위는 전야의 변화와 같은 위상이 될 수 없게 되어 마찰력과 같은 감쇠구조가 없게 되는데, 감쇠력을 극복하기 위해서는 전역 손실이 발생하게 되어 차이를 일으키게 된다 [5].

이러한 과정은 전력선 통신을 위한 시스템 모델링에서 선로와 부하를 분리하지 않고 단단한 기존의 방법과 달리 실제 주기에서의 선로정수를 측정하고 분석함으로써 전력선 통신 시스템 설계에 필요한 구체적인 자료를 제시하였다. 앞으로 다양한 형태나 종류의 전송선로에 대한 측정과 분석을 통하여 더욱 실질적이고 체계적인 연구가 진행되어야 할 것이다.

[참고 문헌]

표 5. 회로 C3, C4의 R(mΩ) 측정값

<table>
<thead>
<tr>
<th>주파수</th>
<th>C3-D</th>
<th>C3-E</th>
<th>C3-F</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>100kHz</td>
<td>460</td>
<td>480</td>
<td>260</td>
<td>240</td>
</tr>
<tr>
<td>20kHz</td>
<td>265</td>
<td>280</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>10kHz</td>
<td>213</td>
<td>227</td>
<td>125</td>
<td>135</td>
</tr>
<tr>
<td>1kHz</td>
<td>185</td>
<td>200</td>
<td>107</td>
<td>122</td>
</tr>
</tbody>
</table>

표 6. 회로 C3, C4의 L(μH) 측정값

<table>
<thead>
<tr>
<th>주파수</th>
<th>C3-D</th>
<th>C3-E</th>
<th>C3-F</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>100kHz</td>
<td>10.8</td>
<td>11.2</td>
<td>6.77</td>
<td>5.1</td>
</tr>
<tr>
<td>20kHz</td>
<td>11.2</td>
<td>11.5</td>
<td>7.2</td>
<td>5.5</td>
</tr>
<tr>
<td>10kHz</td>
<td>11.5</td>
<td>11.8</td>
<td>7.7</td>
<td>5.67</td>
</tr>
<tr>
<td>1kHz</td>
<td>11.7</td>
<td>12.1</td>
<td>47.9</td>
<td>5.8</td>
</tr>
</tbody>
</table>

표 7. 회로 C2, C3, C4의 C(pF) 측정값

<table>
<thead>
<tr>
<th>주파수</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>100kHz</td>
<td>5.5</td>
<td>2.5</td>
<td>120</td>
</tr>
<tr>
<td>20kHz</td>
<td>8</td>
<td>1.5</td>
<td>165</td>
</tr>
<tr>
<td>10kHz</td>
<td>13.5</td>
<td>1.63</td>
<td>170</td>
</tr>
<tr>
<td>1kHz</td>
<td>63</td>
<td>2</td>
<td>190</td>
</tr>
</tbody>
</table>

표 8. 주력배선의 측정값 평균

<table>
<thead>
<tr>
<th>주파수</th>
<th>R(Ω/km)</th>
<th>L(mH/km)</th>
<th>C(pF/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100kHz</td>
<td>15.57</td>
<td>0.31</td>
<td>1.88</td>
</tr>
<tr>
<td>20kHz</td>
<td>9.34</td>
<td>0.32</td>
<td>3.74</td>
</tr>
<tr>
<td>10kHz</td>
<td>7.66</td>
<td>0.33</td>
<td>2.72</td>
</tr>
<tr>
<td>1kHz</td>
<td>6.98</td>
<td>0.548</td>
<td>3.75</td>
</tr>
</tbody>
</table>

3. 결 론

실험을 통하여 본 결과처럼 재산상의 함수 측정은 차이를 보였다. 이 원인은 크게 세 가지로 나타낼 수 있는데, 첫 번째 원인은 선로 배치의 구조 차이 때문에 발생한다. 일반적으로는 두 가닥의 전선이 입생한 간격을 유지하는 방향한 전선으로 가정하였으나 실제의 배선은 간격이 일정하지 않으며 콘센트의 접속을 위한 나무의 접속선에 영향을 끼친 차이가 발생한다.
두 번째 원인은 일반적으로 전선의 기존 구조로 인해 발생하는 차이로 일반적으로는 직렬저항의 영향은 무시하고 선로상의 파는 근사적으로 전선파(TEM파)로 가정하나 실제의 전송 선로는 손실이 존재하며 압착된 전선파(TEM파)는 아니다 [5].
세 번째 원인은 손실 평가의 복소 유전율(complex permittivity)의 주파수가 증가함에 따라 L과 C의 값이 변화하기 때문이다 [5]. 즉, 어떤 물체에 의한 두번 전계가 가해질 때 구조 전화의 작은 변위가 발생하여 측정된파밀도가 약간 이어진 전계와 같은 주파수로 변화한다. 측정된파밀도는 주파수가 증가