A Design of Smart Train Route Control System

Yong-Ki Yoon, Jong-Gyu Hwang, Jae-Ho Lee
Korea Railroad Research Institute

Abstract - As a result of the advancement of radio communications technologies, some investigations are in progress to apply this technologies to a train control system. Most of these investigations are focused on the train safety distance control between a preceding train and a succeeding train, an interlocking system uses train circuits to control the railway path. To make the best use of advantages and improve the safety of radio communications based train control systems, the interlocking system must use radio communications technologies. And the safety level of this system must be equal to track circuit based interlocking systems.

This paper describes the train location detection method, the system configuration and the system safety of the new system.

1. 서론

철도신호시스템은 열차의 안전운행과 수송능력을 높이는 종합적인 철도운영체계로서, 열차-열차간 안전간격을 확보하는 열차간격제어, 정지장 구내에서의 열차입출을 수행하는 열차진입제어 및 통신시스템으로 구성된다. 현재 상용화된 철도신호시스템은 퀘드호를 이용하여 열차간

격제어, 열차진입제어 및 지상-차량 정보 송수신기능을 수행하고 있다. 국내외에서는 퀘드호를 사용하지 않는 무선통신을 적용한 CBTC(Communications Based Train Control)개발을 활발히 진행하고 있으나 열차간

격제어에 집중하고 있다. 그러나 CBTC의 효율성을 높이고 위해서는 열차간격제어기술을 개발하는 것이 필요하다.

퀵호는 환경요인(강우, 폭설, 선로부식)에 의한 단

락 감도 변화 및 유지보수(폐쇄점검) 등의 문제점을 갖고 있으나 현재까지 충분한 신뢰성을 확보하고 있다.

CBTC에서 퀘드호를 사용하지 않고 열차진입제어

등을 수행하기 위해서는 퀘드호기반의 열차진입제어

권과 동등이상의 신뢰성과 안전성을 충분히 확보하여야 한다. 열차진입제어시스템(장치)이 신뢰성과 안전성을 확

보하기 위해서는 안전성 해석과정을 거쳐 열차진입제

이방법, 시스템(장치)구성 및 알고리즘성능 등을 수행하여야 한다.

2. Smart열차진입제어시스템 설계

2.1 Smart열차진입제어시스템의 특징

2.1.1 열차위치감지

열차위치를 감지하는 방법은 퀘드호, 트랜스파터, 유휴

감지, 차축전진, 도플러, GPS, AOA(Angle of arrival),

TOA(Time of arrival) 등 다양한 방식이 있다. 열차위치

정보를 이용한 역-역간 속도제어 및 역정밀차량제어에

적용하기 위해서 고 간격 검지방법을 이용하는 것은

적절한 방법이 아니다.

Smart열차진입제어를 수행하기 위해서는 열차위치정보,

열차속도정보, 열차진입방향정보, 열차진입제어구간

진입/진출정보 등을 필요로 한다. Smart열차진입제어

시스템에서 고려한 열차위치감지방법은 차축터치(타코미

타), 트랜스파터 및 도플러센서를 융합하였는데, 경계선

신뢰성측면에서 우수성을 갖고 있다. 타코미타를 주변서

로 하고 트랜스파터와 도플러센서를 보조센서로 활용하

는 방법으로 다중센서 사용 시 성능향상을 위하여 필요

한 센서융합기술을 적용하였다.

Fig 1 다중센서융합에 의한 열차위치추정

2.1.2 Smart열차진입제어시스템의 특징

(1) 복구(Open loop)체계

전도선시스템은 차량장치와 차량장치 상호간 정보

를 교환하는 복구체계를 형성한다. 기존 전도선시스템은

차량장치에서 차량으로 전송하는 정보가 없어 접근사

해제이상 시기를 결정하여 열차진입제어의 안전을

확보하고 있다. 새로운 시스템은 복구체계를 형성하고 있

여 필요한 열차정보를 송수신(방향으로)할 수 있어

양방향체계로 전송할 수 있다. (2) 주행레이네복수열차장

주행레이는 여러 개의 복수로 구성되며, 복수는 열차

번호, 주행방향 및 복수정보 등의 정보를 갖는다. 퀘드호

로는 복수를 구성하는 물리적 장치이지만, 여기서 의미

하는 복수는 소프트웨어 구분이다.

퀘드호로는 복수기기의 경우 동일한 정보를 형성할

수 있어 퀘드호로 구성된 주행레이에는 복수의 정보가

형성됨을 의미한다. 따라서, 하나의 주행레이에 여러 컨

던 열차정보가 진입할 수 있다.

(3) 운행체계화

전도선시스템은 주행레이에 열차번호(ID)와 열차방향

을 할당한다. 열차를 오류로 열차가 다른 주행레이 진입을

하면 시스템이 설정된 정보(열차번호, 방향)와 진입하는

열차정보(열차번호, 방향)를 비교하여 적절한 조치를 취

할 수 있다. 기존 시스템의 취급자는 열차중복과 운전형
태를 인식하고 진로설정을 할 수 있지만 시스템에서는 제한된 정보(진로목표, 진로설정)에 의해서 오리진 설정을 확인할 수 없다.

2.2 Smart열차진조제어시스템 연동처리
Smart열차진조제어시스템의 연동처리는 기존 시스템과 유사한 과정을 거친다. 즉, 조작부에서 자동 또는 수동으로 진로를 요구하면 진로를 팀해택한 후 진입을 허가하는 것이다.
(1) 진로요구
진로는출발점에서 도착점까지의 의미하는 진로정보의 형태로 자동 또는 수동으로 이루어진다. 진로요구에 필요한 정보는 다음과 같다. 기존 시스템과 달리 사용하는 정보의 종류가 다차다.

입력정보	출력정보
(연동처리부→조작부) | (조작부→연동처리부)
주행표 요구 옵달 | 주행표 요구
주행표ID, 열차ID, 선로변환ID | 주행표ID, 열차ID, 선로변환ID, 상태정보
상태정보 | 선로변환ID, 제어명령

(2) 진로탐색과 진입허가
진로요구에 대한 진로요청은 진로상태와 불록상태를 생성한다. 진로상태는 현재 설정되어 있는 진로를 대상으로 하는 가변적인 내용이고, 불록상태는 불록상태판계 및 선로정체에 따라 정한 내용을 저장한다. Smart열차진조제어시스템의 주행표 요구처리는 다음과 같다.

단계	처리내용
1 | 진로표 존재 여부 확인
2 | 진로상태표 생성(열차ID등록)
3 | 심고길이창진 진로의 경로 또는 deadlock 확인
4 | 주행이 가능한 불록추출 대응되는 선로변환거의 진전임요청 확인
5 | 선로변환거 전환
6 | 선로변환거 전환사용 불록열 송신(열차간격 제어에 사용)

2.3 Fault Tree Analysis
Smart열차진조제어시스템은 열차진조기능과 연동체
생기능으로 구성된다. 이 시스템은 갖는 hazards는 열차의 충돌 및 탈선을 일으키는다. 이러한 hazards의 소스는 이동체 간의 충돌로 인한 사고, 열차대중 선로정체 장애 등이 있다. 이러한 사고는 모두 열차진조요율과 관련된 현상이라 할 수 있다.
열차위치추적요율은 열차위치추적요율의 속도에 대한 불량, 열차위치요율에 기반한다. 열차위치추적물량은 불량해 정상적으로 인하여 충돌 및 탈선이 유발된다. 열차위치요율을 요구는 다음과 같은 구조로 설명할 수 있다.
- 열차로 자동차는 열차위치요율의 기반
- 지상차차차차, 차량 활주/공전에 의한 보정물량
- 열차가 주행하는 선로변환거 오류
- 초기기억, 차량경계, 열차운전방향 등 초기값 불량

2.4 Smart열차진조제어시스템 구성
(1) 열차진조시스템
Smart열차진조시스템은 그림2와 같이 무선통신을 기반으로 열차 간격 및 진로를 제어하며, 차량상호진조장치와 지상선호제어장치로 구성된다.
열차간격제어부와 열차진조제어부를 차량상호진조장치에 설치하며, 각 제어부는 독립적인 무선전송부를 갖는다. 열차진조제어부는 열차간에 설치되어 있는 트랜스버스 위험 통과하면, 트랜스버스의 고유ID를 검지하여 열차가 열차진조제어장치로 진입·진출한 것을 판단한다. 또한, 열차진조제어부는 앞에서 수행된 판단정보를 표대로 무선전송부를 가동하거나 가동을 멈춘다.

Fig.2 Smart열차진조제어시스템 구성
지상의 열차진조제어부는 지상과 차량에 설치된 전용 무선전송부를 통하여 열차가 열차진조제어부로 진입·진출 할 것을 확인할 수 있다. 지상의 열차진조제어부는 지상 차량간 무선전송부를 이용하여 열차의 위치를 실시간으로 추적하고, 이러한 위치데이터를 열차진조제어부로 전송한다. 열차진조제어부는 열차진조제어부의 위치 정보와 열차진조제어부의 무선전송부로부터 전송된 열차 진조제어장치에 진입한 진출정보를 토대로 현장설비인 신호기 및 선로변환기를 제어한다.
(2) 무선통신망
열차가 운행되는 모든 구간에 설치되는 열차진조제어
부의 무선통신망과 담리 열차진조제어부의 무선통신망은 그림3과 같이 선로변환거가 설치되어 있는 역구간, 차량
기지 등의 진조제어구간에서 설치되며, 설치구간을 주행하는 열차의 속도에 맞추어 구간의 길이 설정을 한다. 이는 1-2km 정도를 설정하고 연구과정에서 적절한 길이를 설정한다.

Fig.3 무선통신망 구성
열차진조제어구간의 시점과 끝점은 트랜스포트를 설치하여 열차가 제어구간으로 들어가거나 나가는 것을 경지하여 사용한다. 열차는 설치되어 있는 차량의 열차진조
제어부는 지상차 차량신호를 경지하여 제어부로 들어간 것으로 판단되면 무선전송부를 구동하여 열차의 진조차
실을 지상의 열차진조제어부로 알린다. 반대로 차량이 범위를 벗어난 것을 판단하면 이를 지상으로 전송한 후 무선전
송의 구동을 차감한다. 그리고 열차진조제어구간은 무선 통신장치를 2주로 구성하여 1에 장애가 발생하여도 통신이 이루어질 수 있도록 한다.
(3) 차량장치 구성
그림4와 같은 열차장치는 열차진조제어부는 지상 차량과 차량간에 비밀과 결합하고, 열차간 열차진조제어부로 들어가거나 나가는 것을 경지한다. 열차가 열차진조제어부로 들어간 것으로 판단되면, 열차와 열차진조제어부는 열차간의 진조차 실을 지상의 열차진조제어부로 전송한다. 열차진조제어부는 열차가 열차진조제어부로 진입한 것으로 판단하여 열차진조제어부를 작동한다. 열차가 열차진조제어부 열차진조제어구간을 벗어난 것
(4) 현장설비
그림5와 같이 현장설비는 이미 설치되어 있는 열차진
로제어구간에 설치되어 있는 선로전환기 및 신호기로 제
어·감시하는 장치로서 현장제어기 및 현장설비로 구성된다.

Fig.4 차상장치 구성

Fig.5 현장설비 구성

현장설비는 열차의 무선전송부와 통신을 하는 안테나 및 지상트랜스폰더가 있다. 현장제어기는 중앙처리부. 무
선전송부 및 I/O부로 구성된다. 트랜스폰더는 열차의 선
로진입과 진출을 확인하는 장치로서 열차가 트랜스폰
더를 통과하면 차상에서 이를 감지하여 차상의 열차진
로제어부로 전송한다. 열차진로제어부는 검지한 트랜스
폰더와 열차주행방향 등의 정보를 차상의 무선전송부를
통해 현장제어기의 무선전송부로 전송한다. 지상 무
선전송부를 경유하여 중앙처리부로 전송된 정보를 트래
드로 현장제어기는 열차가 점유한 선로 또는 통과한 선로
를 판단할 수 있다.

무선전송부는 열차의 열차진로제어부에 전송한 정보
를 받아 중앙처리부로 전송하는 기능을 수행한다.

I/O부는 중앙처리부에서 전송할 명령을 수신한 후 이
상호를 통해 전송하는 장치이며, 이 통신에 사용되는 선로전환기
의 상태정보를 중앙처리부로 전송하는 기능을 한다.

중앙처리부는 현장제어기의 핵심기능을 수행하는 장치
로서, 지역제어기에 전송할 연결처리반영에 따라 I/O부
로 명령을 전송한다. I/O부는 서한 상태정보를 지역
제어기로 전송한다. 무선전송부를 경유하여 온라인 열차
정보를 이용하여 다음과 같은 판단을 하고 그 결과를 지
역제어기로 전송한다.

열차진로제어구간의 열차 진입
열차진로제어구간을 열차가 벗어남
열차가 점유한 선로
열차가 통과한 선로
열차진로제어구간에서 열차위치(추가기능)

(5) 지역제어기

일반적으로 열차를 제어하기 위해서는 운행노선을 몇
개의 제어영역으로 분할하고 각각의 영역을 담당하는
지역제어기를 설치한다. 이러한 개념에 따르면 Smart 열
차진로제어시스템의 각 제어영역을 구분하는 지역제어기를
설치한다. 이 지역제어기를 열차진로제어를 위한 지역제

[참고 문헌]

- 1558 -