HSI 정보와 신경망을 이용한 신 차량 번호판 인식

이동민*, 한아름*, 윤경호*, 박중익**· 김광택*

*신라대학교 컴퓨터공학과 **영동대학교 컴퓨터공학과

Recognition of a New Car License Plates using HSI Information and Neural Networks

Dong-min Lee*· Ah-reum Han*· Kyeong-ho Yoon*· Choong-Shik Park**· Kwang-beak Kim*

*Dept. of Computer Engineering, Silla University **Dept. of Computer Engineering, Yongdong University

요 약

본 논문에서는 HSI 정보와 신경망의 비교적 학습 방법인 ART2 알고리즘을 이용하여 신 차량 번호판 을 인식하는 방법을 제안한다. 제안된 방법은 차량의 영상에서 번호판 영역을 추출하는 부분과 추출된 번호판 영역의 문자를 인식하는 부분으로 구성된다. 본 논문에서는 차량 번호판 영역을 추출하기 위해 HSI 컬러 모형의 Hue 정보를 이용하여 차량 번호판 영역을 추출하고 계산된 위치 이동화 방법을 적용하여 추출된 차량 번호판 영역으로부터 문자를 포함한 특정 영역을 이치화 한 후에 4방향 음영 선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드를 인식하기 위해 잠금과 해 손에 비교적 강한 ART2 알고리즘을 적용한다. 제안된 방법의 차량 번호판 추출 및 인식 성능을 평가 하기 위하여 실제 비행용을 신 차량 번호판에 적용한 결과, 기존의 차량 번호판의 추출 방법보다 번호판 영역의 추출률이 개선되었다. 또한 ART2 알고리즘을 적용하여 신 차량 번호판을 인식하는 것이 효율적임을 확인하였다.

키워드

HSI 컬러 모형, Hue 정보, 비지 이전적, 신 차량 번호판, 4방향 음영선 추적 알고리즘, ART2 알고리즘

1. 서 론

차량 번호판 인식 기술은 획득한 차량 영상에서 번호판 영역을 추출하는 단계와 추출된 번호판 영역에서 문자를 인식하는 단계로 나눌 수 있다. 지금까지 번호판 영역 추출 및 인식에 관한 많은 연구가 진행되어 왔으나 색상대비가 낮은 영상이나 번호판의 주위가 복잡한 영상에서 는 번호판 영역을 추출할 수 없는 문제점이 있다[1]. 기존 연구에서는 Hough 변환을 이용한 추출 방법과 그레피 평의 방법, RGB(Red, Green, Blue) 컬러 모형, 그리고 HSI(Hue, Saturation, Intensity) 컬러 모형 등을 각각 이용하였다. Hough 변환은 차량 영상에서 에지 검출한 후, Hough 변환을 이용하여 번호판 영역을 추출하였다[2]. 이 방법은 번호판의 테두리가 선명하지 못하거나 수직·수평 에지가 많이 검출되는 차량에 대해서는 번호판 영역 추출이 어렵고 처리 시간이 많이 소요되기 때문에 실제 적용하기가 어렵다. 그래이 평만도 변화를 이용한 추출 방법은 이전의 일계계에 만족하는 비번호판 영역이 존재하고 번호판의 특징을 가진 경우에 그 영역을 번호판 영역으로 오인하여 더 이상 추출을 위한 검사를 더하기는 않는 문제점이 있다. 그리고 일계계를 제거할 경우에는 (번호판 전체 영역 처리 시간·연결 고정 철수) 함수의 처리 시간이 추가로 필요하므로 전체 추출 속도가 저하되는 문제점이 있다[3]. 기존의 RGB 컬러 값을 이용한 방법은 같은 컬러로 해도 RGB 컬러가 주위 방향 변화에 영향을 받는 문제점을 가지고 있다[4]. 승용차과 승합 차의 경우에 RGB 컬러 정보를 이용한 방법은 녹색에 가까운 값을 추출하여 녹색과 붙이 밀집되어 있는 영역을 번호판 영역으로 선정하여 추출하는 방법이다. 그러나 차량 영상이 전체적으로 녹색이나 빨간 영역으로 인해 번호판의 녹색 영역이 전혀 나타나지 않는 경우에는 번호판을 추출하기 어렵다.

따라서 본 논문에서는 기존의 차량 번호판 추출 방법을 개선하기 위하여 HSI 컬러 모형의
Hue 정보를 이용하여 변환된 영역을 추출하고 추출된 변환 영역에 대해 개선된 피치 이진화 방법을 적용 후, 4방향 윤곽선 추적 알고리즘으로 차량 변환도의 코드들을 추출한다. 추출된 변환 코드들은 ART2 알고리즘을 이용하여 인식한다.

II. 제안된 신 차량 변환도 문자 추출

1. 변환도 영역의 구성과 목적

차량 변환도는 현재 규정에 의거 상단부는 최초 동향지표 코드인 두 개의 작은 숫자와 용도를 나타내는 작은 문자 부분으로 구성되고, 하단부는 일반번호를 나타내는 네 개의 큰 숫자로 구성된다. 차량 변환도의 구성은 그림 1과 같다.

그림 2. HSI 컬러 모형

그레이 영상을 사용할 경우에는 주위의 밝기 변화에 대해 상당히 의존적이이고 RGB 컬러 정보를 사용할 경우에는 RGB 각 성분이 영역도와 밝기를 바꾸고 있으므로, 주변 밝기 변화에 대하여 같은 경우라도 RGB 각 성분은 모두 변하게 되는 문제점이다. 본 논문에서는 이러한 문제점을 개선하기 위하여 HSI 컬러 모형을 적용하여 밝기 변화에 대한 감인성이 보장한다.

제안된 변환도 추출 방법은 밝기값과 색상(H)을 주로 이용한다. 차량 변환도는 변환도 주위의 화소들과는 다른 밝기를 가지므로 먼저 밝기값으로 임의값을 구한다. 비슷한 밝기를 가진 경우 변환도 아웃 부분과 변환도 가진 색상은 차이가 낮다. 이를 구분하기 위해 검은색에서의 겹침 값을 기준으로 하여 외곽으로 변환도 후보 영역을 찾아낸다. 유흰으로는 밝색으로 구분이 되나, 밝기이나 껍데에 의해 변환도의 밝색 바탕의 색상이 바뀌게 인식되지 않는 경우가 있으므로 사프认 마스크를 사용하여 영역 처리를 한다. 밝기 값으로 찾아낸 변환도의 후보 영역을 더 정확한 밝기 영역으로 나타내 주기 위해 퀘어 기법을 사용하여 이웃한 화소들 각각에 가중치를 공한 값을 원시 화소값의 값으로 준다. 퀘어 기법은 컬러 이미지 프로세싱의 가장 기본적인 지역 연산자를 사용한다. 지역 연산자인 이웃하는 픽셀들의 평균값(그레이 성분과 유사한)을 강조하거나 억제하는 처리량을 할리는 것으로 일반적으로 NxN 마스크(혹은 원도우)를 취하여 컨브라운 연산을 수행한다.

지역적인 점이나 신에 대한 정보를 얻기 위해서 전체 이미지에 대해 3 x 3 마스크와 연산하는 픽션 Z를 중심으로 이웃하는 이미지 SET을

명도 : \[I = \frac{1}{3} (R + G + B) \]

채도 : \[S = 1 - \frac{3}{(R + G + B)} \min(R, G, B) \]

색상 : \[H = \cos^{-1} \left(\frac{1}{2} \frac{(R - G) + (R - B)}{\sqrt{(R - G)^2 + (R - G)(G - B)}} \right) \]
정의하면 다음과 같다.

\[Z_i = \begin{bmatrix} Z_1 & Z_2 & Z_3 \\ Z_4 & Z_5 & Z_6 \\ Z_7 & Z_8 & Z_9 \end{bmatrix} \]

여기에 일종의 가중치 SET을 구성하는 마스크를 적용함으로써 쉽게 출력 결과를 얻을 수 있다. 이 마스크는 다음과 같다.

\[W_i = \begin{bmatrix} W_1 & W_2 & W_3 \\ W_4 & W_5 & W_6 \\ W_7 & W_8 & W_9 \end{bmatrix} \]

따라서 영상의 어떤 점에서 마스크에 대한 응답을 계산하면 다음과 같다.

\[R = \sum_{i=1}^{3} W_i Z_i \quad (Z_i : 3 \times 3 \text{ 의 이웃한 화소}, W_i : 3 \times 3 \text{ 의 회선 마스크}) \]

식 1을 사용하여 에러회(sharpening)를 하면 변환된 영상에 늘어선의 색상이 더 선명해진다. 늘어선 색상이 선명한 변환한 경우에는 영역 처리를 하지 않으며, 늘어선 색상이 선명하지 않은 경우에는 영역 처리를 해 줄으므로 세부 측면에서 보다 효과적이고 늘어선 색상에 대한 업계값 하나로 모든 영상의 변환을 추출할 수 있다. 예외적으로 전체적으로 밝기가 어두운 영상에서 자동화된 변환만의 제도가 거리 같은 경우에는 기준이 되는 밝기 기준 값을 낮추어 주어 좀 더 큰 범위 안에서 영역 처리가 이루어지게 한다.

늘어선과 환원 색상에 대한 범위를 구한 다음, 그 범위에 해당하는 화소에 순수한 늘어선색과 환원색의 값과 값을 나타낸다. 늘어선 바탕에 늘어선 확성의 변환된 색상을 이용하도록 하기 위하여 먼저 늘어선 색상을 찾는다. 찾아진 늘어선 색상 입힌 곳에 원색 색상을 취하는 것에 대하여 원색 색상이 존재할 경우 회색톤그램을 나타낸다. 아래에서 먼저 하위 경계선을 찾은 다음 하위 경계선을 기준으로 해서 위쪽으로 다시 상위 경계선을 찾아간다. 밝기와 색상의 조건에 해당하는 부분 영역 처리가 되므로 영상의 위쪽에서는 희스토크램이 일정하게 나타나는 경우가 드물다. 따라서 하위 경계선과 일정한 크기 이상 일어진 상위 경계선이 찾아지면 다시 하위 경계선을 찾아 변환한 후의 영역을 추출한다.

 찾아진 변환한 영역을 검증하는 과정에서 각각의 방법들은 변환을 가로 세로 비가 2 : 1이라는 특성을 이용한다. 그러나 변환한 크기의 비율만으로 검증할 경우 명확한 변화가 두드러진 바닥 영상이나 차이의 정확한 영상과 같은 비 변환한 영역을 추출하는 경우가 발생한다. 그러므로 본 논문에서는 변환한 영역의 검증과정에 \(H = 60^\circ \oplus \text{Hue} < 180^\circ \) 인 히스토그램의 밑면도를 조사하여 변환한 영역에 해당하는지를 검사한다. 그리고 변환한 영역은 눈색 밑면에 밝락한 문자로 되어 있다는 특성에서 히스토그램의 밑면도를 조사한

HSI 컬러 정보를 이용하여 찾은 변환한 영역과 원 영상의 변환한 영역을 각각 이진화한 후에 두 이진화 영상에 대해 검산 연산을 수행하여 최종 변환한 영역을 추출한다. 본 논문에서 검산 연산을 사용한 이유는 추출된 변환한 영역 주변에 잡음이 처리하기 위해 사용하였고 검산 연산 식은 다음과 같다.

\[A \ominus B = x(B), \ominus A \]

그림 3의 (a)는 검산 연산을 수행한 변환한 결과이고 (b)는 최종적으로 추출된 변환한 영이다.

(a) 검산 연산을 수행한 후의 변환한 영역
(b) 추출된 변환한 영역

그림 3. 계산된 변환한 영역 추출 과정

3. 개선된 더치 이진화 방법

일반적으로 영상에 대해 임계값을 원상의 가장 밝은 흰색과 가장 어두운 검은색의 평균값으로 설정한다. 그러나 평균값의 임계값을 설정하여도 물체 영역과 배경 영역을 명확히 분리하지 못할 가능성이 있다. 이는 영상의 희석 값이 색상뿐만 아니라 주변 밝기 영향을 받게 되므로 정확한 임계치를 구한다는 것은 어렵다. 그리고 한 영상 안에는 많은 영역에 걸쳐 명확도 변화가 일어나고 다양한 유형의 물체가 포함되어 있
그림 5. 이진화된 변호판 영상

4. 4방향 응선선 추적 알고리즘을 이용한 개별 문자 추출

4방향 응선선 추적 알고리즘은 그림 6의 2x2 마스크를 이용하며, 응영이 들어간 경계 부분을 기준으로 반시계 방향으로 진행하면서 이미지에서 경계를 만나기 전까지는 왼쪽에서 오른쪽으로 위저 아래로 스캔한다. 경계 지점을 만날 때 경계점을 \(X_k \)로 두고 a와 b에 대한 두 픽셀을 고려하여 마스크 진행 방향을 결정하게 된다. \(X_k \)가 지금까지 자거나 영상의 응선선이 된다. 마스크 진행방향은 a와 b가 모두 배경일 경우에 \(X_k \)를 기준으로 진행 방향으로 회전하고, a가 경계일 경우에는 \(X_k \)가 a로 이동하면서 마스크는 한 픽셀 앞으로 진행한다. 또한 b가 경계일 경우에는 마스크를 \(Y_k \)를 기준으로 시계 방향으로 이동하고 \(X_k \)는 경계점을 b로 이동한다. a와 b가 모두 경계일 경우는 \(X_k \)는 가까운 a로 이동하고 b 또한 이동해야할 경계이므로 \(Y_k \)는 b를 피해 \(X_k \)로 이동한다. 1은 a와 b의 값에 따른 \(X_k \)와 \(Y_k \)의 진행방향인 \(X_k \)와 \(Y_k \)을 나타내며, 주로 논의한 경우는 4개의 경계 방지 알고리즘을 적용하여 그림 4와 같이 차량 변호판 영상을 이진화 한다.
타네였다. 여기서 a와 b의 값은 0과 1을 가지며 0은 배경 픽셀이고 1은 경계 픽셀이다.

그림 6. 음각선 추적을 위한 2×2 마스크

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>X_k</th>
<th>Y_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>b</td>
<td>X_k</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>X_k</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>X_k</td>
<td>a</td>
</tr>
</tbody>
</table>

그림 7은 4방향 음각선 추적 알고리즘을 이용하여 각 문자들을 추출한 결과이다.

그림 7. 음각선 추적에 의한 개별 문자 추출 결과

5. ART2 알고리즘을 이용한 개별 문자 인식

ART2 신경망은 임의의 입력 패턴에 대해 이미 학습된 패턴을 놓치지 않고 새로운 학습 패턴을 학습할 수 있는 안정성(stability)과 적응성(plasticity)을 가지면서 실시간 학습이 가능한 신호 및 고속 학습을 지원할 뿐만 아니라 지역 최소화(local minima) 문제가 발생하지 않는 장점을 갖는다[8][9]. ART2 신경망 알고리즘은 F1레이어, F2레이어, orienting mechanism의 3개의 메인 컴포넌트로 구성되어 있는 self-organizing 신경망이다. ART2신경망 알고리즘은 복잡한 텀플릿 저장과 계속적으로 학습하기 위해 디자인된 복잡한 구조를 가진다. ART2 학습 프로세스를 통해, 각각의 출력 노드는 입력 패턴의 특별한 텀플릿에 의존한다. 특히, 각각의 출력 노드는 입력 패턴의 그룹과 함께 정의된 요소들을 공유하는 텀플릿으로 저장된다. 우선, 네트워크는 F1 레이어에서 입력 패턴을 받아 타네. 그 다음에 네트워크는 F2레이어에 있는 저장된 모든 텀플릿을 비교하고, 하나의 텀플릿은 입력 패턴과 가장 흡사한 요소와 함께 선택되어진다. 그리고 orienting-mechanism을 경유한 입력 패턴과 선택된 텀플릿은 더 가깝게 알아맞거나 잘 매치되는지를 결정하기 위해 비교된다. 마지막으로, 만약 텀플릿이 잘 매치되었다면 이것은 입력 패턴을 더 잘 받아들이기 위해 수정되고, 네트워크는 이것이 입력을 카테고리화한다. 텀플릿이 매치되지 않으면 두번째 단계가 고려사항이나 reset으로부터 재설정된 현재의 텀플릿과 함께 반복된다. ART2 구조도는 그림 8과 같고 ART2 알고리즘은 다음과 같다.

Step 1. k번째 입력 벡터를 \(x_k \) 신경회로망의 \(i \) 번째 클러스터의 중심 벡터 \(w_i \)라 정한다.

Step 2. 새로운 입력 벡터 \(x_k \)에 대해 최소 거리(minimum distance)를 가지는 클러스터 \(j \)을 속자 클러스터로 선택한다. 일반적으로 입력 벡터와 클러스터 중심 벡터 사이의 거리는 유클리디안 거리로 계산한다.

\[
||x_k - w_i|| = \min ||x_k - w_j|| \quad (4)
\]

Step 3. 입력 벡터에 대한 Vigilance Test를 수행한다. 만약 입력 벡터와 속자 클러스터의 중심 벡터 사이의 거리가 경계 \(p(\text{vigilance parameter}) \) 이내에 들어오면 이 입력 패턴은 속자 클러스터와 유사한 패턴임을 의미하여 이 입력 벡터를 속자 클러스터에 포함시키고 그 클러스터의 중심 벡터를 수정한다.

\[
w_{j,k} = \frac{x_k + w_{j,k} \cdot n_{j,k}}{n_{j,k}+1} \quad (5)
\]
여기서, \(n_i \)는 \(i \)번째 클러스터에 포함된 입력 벡터의 개수이다. 만약 입력 벡터와 숫자 클러스터의 중심 벡터 사이의 거리가 반경 \(r \) 보다 크면, 이 입력 패턴은 기존의 클러스터와는 상이한 패턴임을 의미하며 이 입력 벡터로 새로운 클러스터를 생성한다.

Step 4. 모든 입력이 계산된 때까지 Step 1에서부터 Step 3의 과정을 반복 수행한다.
Step 5. 지정된 회수의 학습을 반복 수행하면 신경망의 클러스터 중심 벡터가 각각 변함이 없으면 학습은 종료한다.

III. 실험 및 결과 분석

실험에 사용된 차량 영상은 일반 비사업용 신차량 폭발판을 대상으로 하였으며, 디지털 카메라로 적출한 640×480 크기의 전면부 영상 50장을 대상으로 실험하였다. 실험 환경은 IBM 호환 기종의 Pentium-IV PC에서 Visual C++ 6.0으로 구현하였다. 폭발판 영역 추출은 기존의 RGB 칼라 정보를 이용한 폭발판 추출 방법과 HSI 정보를 이용한 제안된 폭발판 추출 방법 간의 폭발판 추출 개수를 비교하였다. 표 2는 기존의 RGB 클러스터 정보를 이용한 방법과 제안된 HSI 클러스터 정보를 이용한 방법 간의 폭발판 영역 추출 결과를 나타내었다.

<table>
<thead>
<tr>
<th>표 2. 차량 폭발판 추출 개수</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>RGB를 이용한 방법</td>
</tr>
<tr>
<td>제안된 HSI를 이용한 방법</td>
</tr>
</tbody>
</table>

표 2에서 50개의 차량 영상에 대해 RGB 클러스터 정보를 이용한 차량 폭발판 추출 방법은 46개가 추출되었고, HSI를 이용한 제안된 차량 폭발판 추출 방법은 49개가 추출되었다. RGB 클러스터 정보를 이용한 폭발판 추출 방법은 폭발판 영역에 녹색이 많이 포함된 차량 영상에서는 폭발판 영역이 모두 추출되었으나 논색의 분포가 거의 나타나지 않거나 논색의 분포가 남게 되어있는 차량 영상에서는 폭발판 영역의 추출에 실패하였다. 제안된 HSI 정보를 이용한 폭발판 추출 방법은 RGB 클러스터 정보에서 논색의 분포가 남게 되어 있는 2개의 차량 영상에서는 모두 추출되었으나 폭발판 영역 처리 시에 논색의 색상을 완전히 없어버린 1개의 차량에 대해서는 폭발판 추출에 실패하였다. 그림 9는 RGB 클러스터 정보를 이용하여 폭발판 추출에 실패한 경우를 나타내었고 그림 10은 RGB 클러스터 정보를 이용하여 폭발판 추출에 실패한 경우를 제안한 폭발판 추출 방법으로 폭발판 추출에 성공한 경우를 나타내었다.

(A) 폐기 이진화 (B) 개선된 폐기 이진화

그림 11. 폭발판 이진화 결과

그림 11(A)에서와 같이 기존의 폐기 이진화 방법은 개별 코드의 추위에 잡음이 포함되어 개별 코드를 추출할 수 없는 문제점이 발생하는 것을 확인할 수 있고 개선된 폐기 이진화 방법은 그림 11(B)와 같이 폭발판 영역에서 코드 영역과 배경 영역이 명확하게 이진화되어 4방향 유향선 추적 알고리즘으로 개별 코드를 추출하였다. 이 실험을 통해 기존의 폐기 이진화 방법보다 개선된 폐기 이진화 방법이 더 효율적이라는 것을 확인할 수 있었다.

추출된 49개의 폭발판 영역에서 4방향 유향선 추적 알고리즘을 적용한 결과, 294개의 숫자 코드 중 290개의 숫자 코드가 추출되었고, 4개의 문자 코드는 46개의 문자 코드로 추출하였다. 문자 코드는 자음과 모음으로 구분하여 98개의 자음과 모음 중에서 92개의 자음과 모음이 추출되었다. 개별 코드를 추출한 결과는 표 3과 같다.

<table>
<thead>
<tr>
<th>표 3. 개별 문자의 추출 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>290/294</td>
</tr>
<tr>
<td>추출율</td>
</tr>
</tbody>
</table>
제안된 방법에 의해서 추출된 개별 코드들을 ART2 알고리즘을 적용하여 인식한 결과는 표 4 와 같다.

<table>
<thead>
<tr>
<th></th>
<th>숫자</th>
<th>문자</th>
</tr>
</thead>
<tbody>
<tr>
<td>클러스터 수</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>인식 수</td>
<td>287/290</td>
<td>87/92</td>
</tr>
<tr>
<td>인식률</td>
<td>98.9%</td>
<td>94.5%</td>
</tr>
</tbody>
</table>

추출된 개별 코드들을 ART2 알고리즘을 적용하여 인식한 결과, 숫자 코드의 경우에는 290개 중에서 287개가 인식되었다. ART2 알고리즘을 적용하여 생성된 클러스터의 수는 12개이다. 문자의 경우에는 “어”, “장”과 “ㅏ”, “ㅓ”, “ㅗ”, “ㅜ”로 구성된 9개의 자음과 모음을 ART2 알고리즘으로 학습하여 18개의 클러스터가 생성되었고 92에서 87개의 자음과 모음은 인식되었다. 문자 코드가 숫자 코드 보다 인식률이 낮은 이유는 문자 코드를 추출하는 과정에서 문자 정보가 손실된 경우이다. 그리고 ART2 알고리즘은 경계 변수의 설정에 따라 인식률이 달라진다. 표 4 결과는 ART2 알고리즘의 경계 변수를 0.1로 설정하여 학습 및 인식한 결과이다.

IV. 결론

본 논문에서는 HSI 컬러 모형의 Hue 정보를 이용하여 번호판 영상을 추출하였고 추출된 번호판 영역에 대해 제안된 페져 이진화 방법을 적용하여 4방향 응락선 추적 알고리즘으로 개별 코드를 추출하고 ART2 알고리즘으로 추출된 개별 코드를 인식하였다.

비영업용 신 차량 영상을 대상으로 HSI의 Hue 정보와 번호판의 특성을 이용하여 번호판을 추출하였다. 제안된 번호판 추출 방법에서는 H가 60, I가 180, I가 60의 하위 영역을 설정하여 번호판 영역을 높은 영역은 하위 영역을 늘어올린 영역에서 크게 분리하여 번호판 영역을 최종 인식하였고, 또한 번호판 영역의 영역을 추적하기 위하여 HSI 컬러 정보를 이용하여 추적 번호판 영역과 원 영상의 번호판 영역을 각각 이진화한 후에 두 영상에 대해 최대 영상을 추출한 영역의 영역을 추적하였다. 추출된 영역은 개별된 페져 이진화 방법을 적용하여 이진화한 후에 4방향 응락선 추적 알고리즘을 이용하여 번호판영역의 개별 코드를 추출하였다. 제안된 방법을 비교용 신 차량 번호판에 적용한 결과, RGB 정보를 이용한 방법보다 보다 HSI의 Hue 정보와 침체영역을 이용한 방법이 번호판 추출에 효율적인 것을 확인하였다. 개선된 페져 이진화 방법과 4방향 응락선 추적 방법을 적용하여 개별 문자들을 추출한 결과, 392 개의 개별 코드 중에서 382개가 추출되었으며, 추출된 개별 코드를 ART2 알고리즘을 적용하여 인식한 결과, 추출된 382개 중에서 374개의 개별 코드가 인식되었다.

따라서 향후 연구 과제는 개별 코드의 추출률을 개선하기 위하여 8방향 응락선 추척 알고리즘을 적용하여 개별 코드의 추출률을 개선할 것이고 ART2 알고리즘의 문제점인 경계 변수의 설정에 따라 인식률이 저하되는 부분을 개선하기 위하여 경계 변수를 동적으로 조정하는 방법에 대한 연구가 필요하다.

참고문헌