가설된 광선 추적에 의한 블룸 렌더링

*김형균, **김용호
*조선대학교 컴퓨터공학과, **조선이공대학 컴퓨터정보학

Volume Rendering by Improved Ray Casting

Hyeong gyun Kim*, Yong Ho Kim**, Sang Beom Lee**
*Dept. of Computer, Chosun University, **Chosun College of Science & Technology
E-mail : multikim87@hanmail.net

요 약
본 논문에서는 측적 데이터에 대한 효율적인 블룸 렌더링을 수행하기 위해서, 기존의 광선 추적 기법에 대해 광선 보간을 통해서 광선을 추적하는 기법인 IRCF를 제안한다. IRCF 과정은 이웃 좌표에 대한 광선추적을 통해 얻은 블룸영도값의 정보를 이용해 현재 광선 추적 위치의 블룸영도값을 보간한 위치에서 새롭게 광선 추적을 해가는 방식이다. 기존의 고화질의 광선 추적 렌더링의 경우 Volume Rendering Operations의 계산량이 많아 그 만큼 렌더링 속도가 둔화되어 측적에 대해 다른 개선된 렌더링 기법들이 많이 제안되고 있다. 본 논문은 다른 각도로부터의 접근하고자 제안한 기법을 통해 Volume Rendering Operations의 계산량을 최대한 줄임으로써 렌더링 속도를 높이고 기존의 고화질 영상에 가까운 결과를 얻을 수가 있었다. 또한, 본 논문에서는 기존의 광선 추적 기법에서 표현하는 일반적인 회전, 절단, 블루프 등 새책 효과들을 제안한 기법을 통해 비교 분석한다.

키워드
Volume Rendering, Ray CastingUser

1. 서 론

컴퓨터의 대중화로 영상에 대한 관심이 높아짐에 따라 3차원의 영상에서 3차원의 영상으로 발전되어 있고 있는 실정이다. 3차원적인 실시간 정보를 2차원상의 컴퓨터 모니터로 정보를 가시화 하는 데에 대표적으로 블룸 렌더링을 들 수 있다. 블룸 렌더링은 실시간의 물체를 CT나 MRI 같은 장치를 통해 썬플링된 측적 데이터 정보를 이용해 시각화 하는 방법이다.

블룸 렌더링의 응용분야를 살펴보면 Medical Imaging, Modeling, Paleontology, Computational Fluid Dynamics, Education, Nondestructive Testing, Microscopic Analysis, Oil Exploration 등이 분야에 응용되어 있고 특히, 특수한 목적으로 연구되어 활용되고 있는 실정이다.

대표적으로, 블룸 렌더링을 하기 위한 기법 중 광선 추적 기법을 들 수 있다. 이 방법은 Volume Rendering Operations의 과정을 거쳐 고화질의 영상을 얻지만, 특정 표면을 거칠 때마다 다시 처음부터 측적 데이터를 고려하여 영상이 이루어지는 단점을 가지고 있다. 그러면 많은 계산량으로 인해 처리율이 떨어져 비효율적인 렌더링 방식이라고 말할 수 있다.

따라서, 본 논문에서는 측적 데이터에 대한 기존의 광선 추적 기법의 단점을 보완하여 개선한 방법인 IRCF 과정을 통해 효율적인 블룸 렌더링을 하는 방법을 제안한다. 여기서, IRCF 과정은 홀수 화소와 홀수 화소를 창으로 하는 광선 추적 기법을 이용한다. 즉, 홀수 화소로 결정을 위해 광선 추적을 거치고 광선 추적에 의해 결정된 위치와 블루프도 값을 이용해 다시 예상되는 물체의 블루프도값을 제거한 후 남은 블루프도값의 위치에서 시작하여 적수 화소에 대해 광선 추적 과정을 거쳐 색을 결정하는 방식이다.
제안한 방식을 통한 렌더링은 기존의 광선 추적 기법에 대해 Volume Rendering Operations의 재산량을 많이 줄임으로서 처리율을 높였고, 빌트 아우디오 유사한 극화의 영상 결과물을 얻을 수 있었다. 기존의 방식과 제안한 방식에 대해 처리량 분석과 광선 추적 기법에서 표현되는 회전, 정단, 블루투즈 등에 대해 렌더링을 수행하여 비교 분석하였다.

본 논문에서는 2장에서 기존의 광선 추적에 의한 블루 렌더링에 대해 살펴보고, 3장에서 기존의 광선 추적 기법을 개선한 PRCF 과정을 통한 블루 렌더링 기법에 대해서 기술한다. 4장에서는 기존의 광선 추적과 개선한 광선 추적 기법에 대해 시뮬레이션하여 그 효율성을 비교 분석한다. 마지막으로 5장의 결론에서는 향후 연구과제에 대한 방향을 제시한다.

II. 기존의 광선 추적을 통한 블루 렌더링

블루 렌더링은 실시간의 대상에 대해 CT나 MRI 같은 장비를 통해 심플링된 데이터에 의해 되어진 체적 데이터를 통해 3D 시각화 하는 방식이다. 2차원 이미지에서 표현할 수 없었던 복잡한 영역의 표현이나 내부 영역의 구조를 표현할 수 있는 특징을 갖고 있다. 일반적으로 블루 렌더링의 과정은 아래와 같이 Volume Rendering Operations 과정을 통해 가시화 하게 된다.

![Diagram](attachment:image.png)

그림 1. Volume Rendering Operations

대표적으로 광선 추적 렌더링을 들 수 있는데, 광선 추적 기법은 모든 블루 데이터의 정보를 이용하는 기법으로, 각 화소를 지나는 광선율을 추적하면서 각각의 블루 데이터들이 가진 정보를 Volume Rendering Operations 과정을 통해 복잡한 과정을 통해 명기할 수 있다. 즉, 광선 추적은 심플링된 값들을 3차원 각각의 블루 데이터를 산도 선형 보간을 통해 이루어진 가상의 연속적인 공간으로 보고 광선을 따라 일정 간격으로 블루 데이터가 광선 방향에 기여하는 정도를 누적함으로써 최종적인 광선의 방향을 결정하는 방법이다. 이를 할 수 있다. 여기서 광선의 기여를 누적하는 방법으로 Front-To-Back 방식과 Back-To-Front 방식을 들 수 있다. 그림 2와 같이 Front-To-Back 방식으로 광선 추적 위치에 따라는 블루 데이터들에 대해 표면법선 데이터 전산, 복잡한 보간 연산, 영역 분할, 색이딩, 누적작업을 통해 광선의 확산의 확률을 결정한다.

III. 제안한 PRCF 과정을 통한 블루 렌더링

본 논문에서는 제안한 PRCF (Improved Ray Casting Function) 과정은 기존의 광선 추적 과정을 보간한 형태로 확수가 적수화 소를 효과적으로 확대 회로 결정된 블루투즈와 위치의 정보들은 토대로 일정한 간격으로 다시 물체에 부착되는 블루투즈와 결정된 확수화의 확산도에서 적수화 위치를 결정한 기간의 위치를 출발점으로 하여 적수화 확산의 블루투즈를 광선 추적에 의해서 결정하게 된다.

![Diagram](attachment:image2.png)

(a) 기존과정 (b) 개선한과정

그림 2. 광선 추적 과정

그림 2처럼 기존의 광선 추적 과정과 개선한 광선 추적은 기존의 광선 추적의 경우(a)은 일정이 각 화소에 밝기 결정을 위해 광선 추적 기법은 초기 화소 위치에서 일정이 추적해 나가게 되지만, 개선된 광선 추적의 경우(b)는 A의 위치에서는 기존 광선 추적 과정을 거치고 B지점에서는 A지점에서 보간한 위치 정보를 통해 보간 위치에
서 광선 추적의 시작이다. (b) 그림에서 B회사의 점선 부분 만큼의 광선 추적 과정을 수행하지 않게 된다.

하지만, A지점의 결정된 화소의 위치에서 일정거리만큼 보간할 위치만의 후진 광선추적을 해야 한다는 점을 유의해야 하며 그림 3과 같이 보간위치 뒤의 블록 데이터에 대해 광선 추적 과정을 수행하지 않으며, 각 화소마다 다르겠지만 계산량에 대해서 황수 화소선택에서도, 기존 Volume Rendering Operations의 계산량은 기존 광선 추적 기법과 계산량이 크게 다르지 않지만, 합수 화소선택에서 경우, 배경이 차지하는 비율이 어느 정도나에 따라서 Volume Rendering Operations의 계산량이 대폭 줄여질 수 있다. 따라서, 천체적으로 계산량은 줄어드는 효과를 얻게 된다.

본 논문에서 제안한 IRCF 과정은 크게 3과정을 거치게 된다. 황수 화소 밝기 결정과, 보간값과 위치 추출, 보간된 위치에서 합수 화소 밝기 결정으로 세 단계를 거치게 된다.(그림 4)

그림 4. Improved Ray Casting Function 과정

여기서, IRCF 과정을 거쳐, 계산량에 대해 4장에서 제시한 분석표를 살펴보면 엄청나게 계산량을 줄인다는 사실을 알 수가 있다. 그림으로써, 기존의 광선 추적에 의해 얻는 고화질에 가까운 영상과 효율적인 시각화를 할 수 있게 된다. 다음 4장에서는 기존의 광선 추적 과정의 경우와 개선된 광선 추적 과정에 대해 시뮬레이션을 통해 비교 분석 하기로 한다.

IV. 실험 및 결과

기존의 광선 추적 과정과 개선된 광선 추적 과정의 Volume Rendering Operations의 계산량의 차이를 표1과 같이 비교 분석 해본다.

표 1. Volume Rendering Operations 계산량 비교

<table>
<thead>
<tr>
<th>데이터형</th>
<th>Total Pixel</th>
<th>기존계산량</th>
<th>개선계산량</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE</td>
<td>7208960</td>
<td>4015329</td>
<td>2302380</td>
</tr>
<tr>
<td>LOBSTER</td>
<td>3481600</td>
<td>2929564</td>
<td>1600603</td>
</tr>
<tr>
<td>3DHEAD</td>
<td>714324</td>
<td>5052436</td>
<td>2855260</td>
</tr>
<tr>
<td>CHHEAD</td>
<td>7405568</td>
<td>5318987</td>
<td>2973958</td>
</tr>
</tbody>
</table>

표 1을 참조하면 전체 블록 데이터에 대해 광선 추적시 지나는 각각의 블록 데이터에 대해 Volume Rendering Operations를 수행하게 되며 수행량을 살펴보면 기존의 방식에 비해 계산량을 줄이게 되는 것을 볼 수 있다. 계산량을 줄인다고
끝나는 것은 아니지만 깊은 영향을 줄여야만 충만한 영향을 줄여야 한다. 그 영향을 줄여야 한다. IRCF 과정이 제안되었고, 그림 5에서 보는것과 같이 여러 3D 복률 데이터에 대해 개선된 기법을 통해 개선영향을 줄였음을 볼 수가 있다.

그림 5는 기존의 광선 추적 렌더링 영상과 개선된 광선 추적 렌더링 영상을 나타내고 있다.

그림 5는 복률 데이터의 연관에 대한 렌더링을 한 결과로, 거의 유사한 고화질의 시각화 효과를 얻음을 볼 수가 있다. 그림 6은 표 1에서 비교환영한 3D 복률 데이터에 대해 렌더링 한 결과이다.

[참고문헌]