전력선전응을 이용한 가정용 지능화 부하 단말 시스템의 개발
박찬원, 전진욱, 전성석
김광대학교 IT특성화전공, 한국폴리텍대학

Development of smart power terminal system for home use with power line communication
Chan-won Park, Jin-wook Chun, Sam-suik Chun
Kangwon National University, Korea Polytechnic 1 College.

Abstract - 본 논문은 전력선전응(outlet)에 연결된 가전용 사용자 및 가전기기들의 전력사용을 실시간으로 감지 논리용하며 실시간 데이터 전송 및 사용량계를 파악하여 과도의 전력 사용 현황을 유지할 수 있도록 제어하여 주의 설비참여 및 전력선전응의 신호전달을 전력화 타당히 한 가전선전응 통합 리버터의 개발에 관한 것이다.

1. 서론
IT기술이 발전함에 따라 사물설비 및 가전기기의 전력사용이 증가하고 있으며, 이와 함께 전력 소비가 증가하면서 에너지 낭비에 따른 다양한 원인의 발생과 민간의 가전전력전용을 전량화하고 보다 세부적인 제어 및 매크로 제어가 가능하게 되었다. 이는 IT기술의 발전으로 인해 전력사용 현황을 감지하기 위한 방법로 제언되고 있으며, 이러한 시장의 열기에서 진화하고 있는 지능화된 부하감지 및 제어 설비로의 출현에 요구가 있다.

본 연구에서는 이러한 전력사용 현장에서 난해하게 연결된 각 부하기기를 실시간으로 전력사용 현장을 감지하여 전력전용을 이용하여 간이 에너지매

2. 본론
2.1 전체시스템 구성
계열화된 시스템을 분산형의 방식으로 구성하였으며, 전력사용 현장에 설치된 전력사용량을 감지할 수 있도록 독립적인 Data Repeater/Controller는 PC와 여러 가지 전용 방법을 통한 통신을 복합하고 사용 가능하게 제작하였다. 그림 1은 전체시스템 구성도이다.

2.1.1 각 모듈의 유니버셜 기능
스위치 모듈인 Relay output 모듈은 단순 스위치적 타이어 기능, 조정

2.2 허드웨어의 구성
2.2.1 각 모듈의 유니버설 기능
스위치 모듈과 Data Logger/Repeater controller unit 간의 Data 통신은 물론 프로그램 TACI는 전력전용 을 통한 제어를 가능하게 하였으며, 제어 모듈은 전력사용 현장에 설치된 Data Logger/Repeater는 전력사용량을 감지하는 모듈로 PC와 연결되어 모듈의 통신을 사용할 수 있도록 가능하게 하였다. 그림 2는 모듈의 연결도 및 통신을 사용할 수 있도록 가능하게 하였다. 그림 2는 모듈의 연결도 및 통신을 사용할 수 있도록 가능하게 하였다.

3. 작품 출제
3.1 전력사용 현장의 요약
전력사용 현장에서 실시간으로 감지하여 전력사용 현장을 분석할 수 있도록 모듈의 구성을 통해 제작하였다. 그림 2는 모듈의 연결도 및 통신을 사용할 수 있도록 가능하게 하였다.

3.2 전력사용 현장의 요약
전력사용 현장에서 실시간으로 감지하여 전력사용 현장을 분석할 수 있도록 모듈의 구성을 통해 제작하였다. 그림 2는 모듈의 연결도 및 통신을 사용할 수 있도록 가능하게 하였다.
호 상호를 갖추고 있다.
⑦ PLC Modem - 120/150kbps의 카ARRIER 주파수를 차지하는 Power Line Communication용 모드 IC로 PLC통신 Half Duplex로 제조된다.
⑧ TRIAC Interface - 전원고압측과 Digital 저압측을 고압식으로 변환하는 TRIAC의 트리거에 LED-Photo TRIAC 포토커플러를 사용하였다.
⑨ Sync Signal Detect - 전원단위의 주파수를 zero crossing position 표시기로 수신하기 위한 회로로 TRIAC의 제어 타이밍과 각 섹터의 제어
그리고 PLC 통신의 기준 신호를 이용하였다.
⑩ Line Coupling - 인터넷스의 콘센트로 인터넷스 Step-down을 하고 2ST-100T 페이로드 코덱스로 PLC의 line Coupling 회로를 구성하였다.
이 때 MODEM IC의 송수신기장이 동상으로 전원이 5V로 소프트웨어 하도 차이가 아니라 동일으로 복잡을 없었다.
⑪ Power Supply - 모듈화된 내장형 콘센트형의 소형으로 구성하여 Step-down 전원전트랜스FORMER를 사용하여 공기니에 적합하게 전원을 생성할 수 있었다.
따라서 회로에선 Impedance Step-down 회로를 사용하여 AC전원을 강제히 배치하거나 다른 AC전원으로 전환하는 회로를 개발하였다.
⑫ CT와 전원 - 코일형 CT는 전원 전압을 점검한 전원을 사용하여 전하를 사용하였다.

2.2.2 Data Repeater
전력전송 통신모드의 변환장치가 없거나 3상전원과 같이 전원의 신호가 다르면 통신이 연결되지 않거나 신호에따는 전신이 없으므로 전자가 전자지역의 통신여부를 확인해야 한다. 다음 결과를 발생시키기 위하여 통신요소가 있는 디지털시계의 Data Repeater를 개발하였고 다른은 전자기신호와의 특성을 요약하는 맥락이다.
① 신호처리 전원 변환장치함양에 연결하면 Data가 중요하다.
② 신호처리와 같은 것이 다른 전자기신호와 동일하나 가능하다.
③ 발생주의에 변경할 때 다른 전자기신호를 사용할 수 있다.
④ 다른 주요한 통신 경로를 지원한다.

<그림 3> 개발된 Data Repeater의 구성원리도
그림 2는 Data Repeater의 하드웨어 구성의 도출이다. 앞서 연구에서 개발한 Data Repeater는 변환장치의 본체로, 제조하기 위해서는 캐비
드와 RS232로 매 수신단의 변환장치를 제작하였다. 전문 연구에서 업그레이드된 Data Repeater에는 여러 가지 전원 변환기로 전자기신호에 따라 변환할 수 있도록 여러 채널과 PC, PLC를 사용하여 전자기신호, 전자기신호로 동의를 수신하는 Data를 준비하였다. 본 연구의 Data Repeater는 USB, RS232, RS485, PLC MODEM 1, PLC MODEM 2를 같이 하여 각기 다른 통신모드 구성을 이용하였다. 예를 들면 USB를 이용하여 PC의 Data를 전송할 때, Data를 전자기신호로 전송하는 Data를 준비해 Data를 전송하는 구조로 구성되어 있다.

예
① RX → USB
TX → RS232, RS485, PLC MODEM 1, PLC MODEM 2
② RX → RS232
TX → USB, RS485, PLC MODEM 1, PLC MODEM 2
③ RX → RS485
TX → USB, RS232, PLC MODEM 1, PLC MODEM 2
④ RX → PLC MODEM 1
TX → USB, RS232, RS485, PLC MODEM 2
⑤ RX → PLC MODEM 2
TX → USB, RS232, RS485, PLC MODEM 2

이와 같이 데이터에 대한 모든 통신 구성은 아래로 교차 지원할 수 있다.
고속의 데이터통신이 아닌 일반적인 통신수신좌의 통신에서 전자기신호가 적을 때는 실시간 중계를 할 수 있으며 통신 속도는 50/1200 BAUD로 동작한다.

2.2.3 Data Repeater의 소프트웨어
그림 4의 Data Repeater의 소프트웨어의 화면도를 간략히 나타낸 것이다.
Data Repeater는 각 장비에 들어오는 송신데이터를 저장한다. 우선 USB로부터 데이터를 전송받고 데이터를 입력하고 멀티 터미널을 다룬 후 신호를 내보내는 RS232나 RS485 그리고, PLC1, PLC2 또는 통신모드로 전송한 데이터를 입력받는다. 이렇게 멀티 터미널 USB로부터 입력받은 후 신호를 내보내는 RS232, 그리고 RS485를 전송한 후 PLC1, PLC2 또는 통신모드로 입력을 받아온 데이터를 입력받은 후 신호를 내보낸다.
기존의 Data Repeater는 키보드로 입력을 받아 들어올 데이터와 이를 PC로 전송하여 신호를 입력받은 후 신호를 내보낸다, 이제 제어를 통해 측정한 값을 실시간으로 PC로 전송하여 단순한 제어 및 관리를 PC에서 GUI로 그 특성을 통한 조작을 하여 확인할 수 있다.

<그림 4> Data Repeater의 소프트웨어
화면도

3. 결론
앞서의 연구에서 제작한 전자통신공학분야에 전자기신호 를 통한 전자기신호와의 통신과의 통신에 대한 연구를 수행하고 Data를 전송하는 Data를 개발하였다. 그러나 Data를 재생할 수 있는 장치가 필요로 전자기신호를 전송하기 위해서는 여러 가지 기술이 제한되어 더 효율성이 디지털 기술과 전자기신호의 전송을 가능하게 하였다. 이 기술을 통해 사용자가 필요로 하는 전자기신호의 전송을 총격해 데이터 할 수 있게 되었고, 전자기신호의 전송 시간을 통한 전자기신호의 전송을 총격해 데이터 할 수 있게 되었습니다. 따라서 요약한 바와 같은 전자기신호의 전송을 총격해 데이터 할 수 있게 되었습니다.

[참고 문헌]

- 2016 -